Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 26, Issue 4, pp 1275–1281 | Cite as

The Influence of Excitation Frequency on Magnetic Levitation Systems with a High-T c Superconductor

  • K. Ben Alia
  • L. Alloui
  • F. Bouillault
  • S. M. Mimoune
Original Paper
  • 147 Downloads

Abstract

In this paper we present a numerical analysis of dynamic features of the levitation system generated by an interaction between a levitated permanent magnet (PM) and a high-T c superconductor (HTSC) excited by an oscillatory external source. The obtained results show that the value of the frequency (f free) of the PM displacement in the case of the levitation system generated by an interaction between a levitated PM and a fixed HTSC is equal at the resonance frequency (f re) of the levitation system generated by an interaction between a levitated PM and HTS excited by an oscillatory external source and the resonance frequency (f re) is mainly dependent upon the cooling position (Z 0) and the mass of the PM. The numerical problem in this paper is solved by using the control volume method (CVM).

Keywords

High-Tc superconductor Control volume method Levitation system Excitation frequency Resonance frequency 

References

  1. 1.
    Bai, J.G., Zhang, X.Z., Wang, L.M.: A flywheel energy storage system with active magnetic bearings. Energy Procedia 16(Part B), 1124–1128 (2012) CrossRefGoogle Scholar
  2. 2.
    Liu, L., Wang, J., Deng, Z., Li, J., Zheng, J., Ma, G., Wang, S.: Levitation force transition of high-T c superconducting bulks in varying external magnetic field. IEEE Trans. Appl. Supercond. 20(3), 920–923 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    Cho, H.-W., Han, H.-S., Lee, J.-M., Kim, B.-S., Sung, S.-Y.: Design considerations of EM–PM hybrid levitation and propulsion device for magnetically levitated vehicle. IEEE Trans. Magn. 45(10), 4632–4635 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    Zheng, X.J., Gou, X.-F., Zhou, Y.-h.: Influence of flux creep dynamic behaviour of magnetic levitation systems with a high-T c superconductor. IEEE Trans. Appl. Supercond. 15(3, 1574–1577 (2005) CrossRefGoogle Scholar
  5. 5.
    Gou, X.-F., Zheng, X.-J., Zhou, Y.-H.: Drift of levitated/suspended body in high-T c superconducting levitation systems under vibration. Part II. Drift velocity for gap varying with time. IEEE Trans. Magn. 17(3), 3803–3808 (2007) Google Scholar
  6. 6.
    Kasal, R.B., de Andrade, R. Jr., Sotelo, G.G., Ferreira, A.C.: Simulation of dynamic levitation force tacking flux creep into account. IEEE Trans. Appl. Supercond. 17(2), 1574–1577 (2007) CrossRefGoogle Scholar
  7. 7.
    Zheng, X.-J., Gou, X.-F., Zhou, Y.-H.: Influence of flux creep on dynamic behavior of magnetic levitation systems with a high-T c superconductor. IEEE Trans. Appl. Supercond. 15(3), 3856–3863 (2005) CrossRefGoogle Scholar
  8. 8.
    Gou, X.-F., Zheng, X.-J., Zhou, Y.-H.: Drift of levitated/suspended body in high-T c superconducting levitation systems under vibration. Part II. Drift velocity for gap varying with time. IEEE Trans. Appl. Supercond. 17(3), 3803–3808 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    Anderson, P.W.: Theory of flux creep in hard superconductors. Phys. Rev. Lett. 9(7), 309 (1962) ADSCrossRefGoogle Scholar
  10. 10.
    Rhyner, J.: Magnetic properties and ac losses of superconductors with power law current–voltage characteristics. Physica C 212, 292–300 (1993) ADSCrossRefGoogle Scholar
  11. 11.
    Yoshida, Y., Uesaka, M., Miya, K.: Evaluation of dynamic magnetic force of high-T superconductor with flux flow and creep. Int. J. Appl. Electromagn. Mater. 5, 83–89 (1994) Google Scholar
  12. 12.
    Kameni, A., Netter, D., Sirois, F., Douine, B., Lévêque, J.: New hybrid FE–FV method for computing current distribution in 2-d superconductors: application to an HTS cylinder in transverse magnetic field. IEEE Trans. Appl. Supercond. 19(3), 2423–2427 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Alloui, L., Bouillault, F., Mimoune, S.M.: Numerical study of the influence of flux creep and of thermal effect on dynamic behaviour of magnetic levitation systems with a high-T c superconductor using control volume method. EPJ, Appl. Phys. 37(2), 191–195 (2009) Google Scholar
  14. 14.
    Alloui, L., Bouillault, F., Bernard, L., Lévêque, J., Mimoune, S.M.: 3D modeling of forces between magnet and HTS in a levitation system using new approach of the control volume method based on an unstructured grid. Physica C 475, 32–37 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    Brandt, E.H.: Superconductors disks and cylinders in an axial magnetic field. I. Flux penetration and magnetization curves. Phys. Rev. B, Condens. Matter 58(10), 6505–6522 (1998) ADSGoogle Scholar
  16. 16.
    Biro, O., Preis, K.: On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents. IEEE Trans. Magn. 25(4), 3145–3159 (1989) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • K. Ben Alia
    • 1
  • L. Alloui
    • 1
    • 2
    • 3
  • F. Bouillault
    • 2
    • 3
  • S. M. Mimoune
    • 1
  1. 1.Laboratoire de Modélisation des Systèmes Énergétiques LMSEUniversité de BiskraBiskraAlgérie
  2. 2.Laboratoire de Génie Electrique de Paris, LGEP, CNRS UMR 8507, SupélecUniversité Pierre et Marie Curie-Paris 6ParisFrance
  3. 3.Université Paris Sud-Paris 11Gif-Sur-Yvette CedexFrance

Personalised recommendations