Advertisement

Design and AC Loss Analysis of a 22.9 kV/50 MVA Class Triaxial HTS Power Cable

  • Sung-Kyu Kim
  • Sun-Kyoung Ha
  • Jin-Geun Kim
  • Seokho Kim
  • Minwon Park
  • In-Keun Yu
  • Sangjin Lee
  • Kideok Sim
Original Paper

Abstract

Recently, triaxial high temperature superconducting (HTS) power cables have become a mainstream design in the development of HTS cables because of several advantages, such as the reduced amount of HTS wire, low leakage fields, and compactness, when compared with other types of HTS cable. Unlike the AC loss from other types of HTS cable, the AC loss from the triaxial HTS cable is influenced by the magnetic fields of other phases, as the triaxial HTS cable does not have a shield layer between the phase conductors.

The authors have designed a 22.9 kV/50 MVA class triaxial HTS power cable. The AC loss and the magnetic characteristics of the triaxial HTS power cable are analyzed using the Comsol program, a commercial finite element method. To confirm the characteristics of the triaxial HTS power cable by wire type, the characteristics of two wire types were applied to the FEM model.

Keywords

AC loss FEM analysis HTS power cable Magnetic characteristic Triaxial 

Notes

Acknowledgements

This work was supported by the Power Generation & Electricity Delivery of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20111020400010), and the authors of this paper were partly supported by the Second Stage of Brain Korea21 Projects.

References

  1. 1.
    Hamajima, T., Hu, N., Ozcivan, N., Soeda, S., Yagai, T., Tsuda, M.: Balanced three-phase distributions of tri-axial cable for transmission line. IEEE Trans. Appl. Supercond. 19, 1748–1751 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    Tsuda, M., Alamgir, A.K.M., Ito, Y., Harada, N., Hamajima, T., Ono, M., Takano, H.: Homogeneous current distribution in a coaxial superconductor with and without return current path. IEEE Trans. Appl. Supercond. 11, 2481–2484 (2001) CrossRefGoogle Scholar
  3. 3.
    Young, M.A., Gouge, M.J., Pace, M.O., Demko, J.A., Duckworth, R.C., Lue, J.W., Fathy, A.: An investigation of the current distribution in the triaxial cable and its operational impacts on a power system. IEEE Trans. Appl. Supercond. 15, 1751–1754 (2005) CrossRefGoogle Scholar
  4. 4.
    Gouge, M.J., Lindsay, D.T., Demko, J.A., Duckworth, R.C., Ellis, A.R., Fisher, P.W., James, D.R., Lue, J.W., Roden, M.L., Sauers, I., Tolbert, J.C., Træholt, C., Willén, D.: Tests of tri-axial HTS cables. IEEE Trans. Appl. Supercond. 15, 1827–1830 (2005) CrossRefGoogle Scholar
  5. 5.
    Brambilla, R., Grilli, F., Martini, L.: Development of an edge-element model for AC loss computation of high-temperature superconductors. Supercond. Sci. Technol. 20, 16–24 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    Kim, S., Sim, K., Cho, J., Jang, H.M., Park, M.: AC loss analysis of HTS power cable with RABiTS coated conductor. IEEE Trans. Appl. Supercond. 20, 2130–2133 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    Cho, J., Bae, J.H., Kim, H.J., Sim, K.D., Kim, S., Jang, H.M., Lee, C.Y., Kim, D.W.: Development of a single-phase 30 m HTS power cable. Cryogenics 46, 333–337 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    Miyagi, D., Yunoki, Y., Umabuchi, M., Takahashi, N., Tsukamoto, O.: Measurement of magnetic properties of Ni-alloy substrate of HTS coated conductor in LN2. Physica C 468, 1743–1746 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sung-Kyu Kim
    • 1
  • Sun-Kyoung Ha
    • 1
  • Jin-Geun Kim
    • 1
  • Seokho Kim
    • 1
  • Minwon Park
    • 1
  • In-Keun Yu
    • 1
  • Sangjin Lee
    • 2
  • Kideok Sim
    • 3
  1. 1.Changwon National UniversityChangwonRepublic of Korea
  2. 2.Uiduk UniversityGyeongjuRepublic of Korea
  3. 3.Korea Electrotechnology Research InstituteChangwonRepublic of Korea

Personalised recommendations