Band Structure and Quantum Oscillations in YBa2Cu3O7: A Local Spin Density Approximation with the On-Site Coulomb Interaction Study

Letter
  • 224 Downloads

Abstract

First-principles calculations have been performed on the Bravais lattice, the density of states (DOS), the band structure (BS) and the Fermi Surface (FS) topology for high-Tc superconductor YBa2Cu3O7. We used the method of the Full-Potential non-orthogonal Local-Orbital Minimum-Basis Band-structure Scheme (FPLO) [in the local spin density approximation with the on-site Coulomb interaction (LSDA+U) and the coherent potential approximation (CPA)] coupled with the XFSF program. Our FPLO Fermi surface consists of four large quasi-2D cylinders centered on the Brillouin zone corners with mostly CuO2 plane character and two quasi-1D sheets with mostly Cu–O apex (or apical O) chain character. The main feature of this Fermi surface is that each CuO chain-sheet shows up in its center a small tubular pocket with a funnel-like shape (Fermi pockets) with mainly Ba–O apex character which could give rise to the quantum oscillations observed by Doiron-Leyraud et al. (Nature 447: 565, 2007). Our FPLO band structure (BS) shows that three flat bands cross the Fermi level (FL) which suggests that the two Fermi pockets could be produced by the conjunction near the Fermi level of two flat bands arising from the apex oxygen (BaO layer). This is consistent with the density of states (DOS) where the Fermi level is dominated by the two O apex (BaO) peaks (∼90 %). Moreover, the strong narrow peak exhibited in the DOS just below the Fermi level (FL) corresponds to the van Hove singularity (VHS) and originates from the hybridization of Cu 3d and apex O2p (BaO) orbitals. In other hand, the calculated value of the bare band-structure Sommerfeld constant γ0band=10.60 mJ/(mol K2) corresponds to a very high Fermi level density of states N(EF)=4.72 states/(eV×cell) and the electron–phonon coupling constant λ is found to be about 1.64 which implies that YBa2Cu3O7 compound is a strong-coupling superconductor and the cyclotron effective mass m is enhanced in comparison with the band mass mb [m=(1+λ)mb]. Also, the discrepancy between our FPLO calculated Debye temperature (274.15 K) and that obtained experimentally (437 K) may originate from a phonon anisotropy likely generated by the antiferromagnetic spin fluctuations. Our results therefore provide evidence of changes in the topology of the Fermi surface materialized by the Ba–O apex small pockets formed in the center of the Cu–O apex Fermi surface sheets.

Keywords

Quantum oscillations Fermi surface pockets Band structure Density of states Electron–phonon coupling constant Debye temperature YBa2Cu3O7 FPLO 

Notes

Acknowledgements

We thank the theoretical physics group at the IFW-Dresden, Germany.

References

  1. 1.
    Doiron-Leyraud, N., Proust, C., Leboeuf, D., Levallois, J., Bonnemaison, J.B., Liang, R.X., Bonn, D.A., Hardy, W.N., Taillefer, L.: Nature 447, 565 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    Meng, J., et al.: arXiv:0906.2682v1 [cond-mat.supr-con] 15 Jun (2009)
  3. 3.
    Leboeuf, D., Doiron-Leyraud, N., Levallois, J., Daou, R., Bonnemaison, J.B., Hussey, N.E., Balicas, L., Ramshaw, B.J., Liang, R., Bonn, D.A., Hardy, W.N., Adachi, S., Proust, C., Taillefer, L.: Nature 450, 533 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    Jaudet, C., Vignolles, D., Adouard, A., Levallois, J., Leboeuf, D., Doiron-Leyraud, N., Vignollle, B., Nardone, M., Zitouni, A., Liang, R., Bonn, D.A., Hardy, W.N., Taillefer, L., Proust, C.: Phys. Rev. Lett. 100, 187005 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    Vignollle, B., et al.: Nature 455, 952 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    Carrington, A., Yelland, E.A.: arXiv:0706.4418v2 [cond-mat.supr-con] 12 Oct (2007)
  7. 7.
    Elfimov, I.S., Sawatzky, G.A., Damascelli, A.: arXiv:0706.4276v2 [cond-mat.str-el] 18 Jan (2008)
  8. 8.
    Sebastian, S.E., Harisson, N., Palm, E., Murphy, T.P., Mielke, C.H., Liang, R., Bonn, W.N., Hardy, D.A., Lonzarich, G.G.: Nature 454, 200 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    Chakravarty, S., Kee, H.-Y.: Proc. Natl. Acad. Sci. USA 105, 8835 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Yelland, E.A., et al.: Phys. Rev. Lett. 100, 047003 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Bangura, A.F., Fletcher, J.D., Carrington, A., Levallois, J., Nardone, M., Vignollle, B., Heard, P.J., Doiron-Leyraud, N., Leboeuf, D., Taillefer, L., Adachi, S., Proust, C., Hussey, N.E.: Phys. Rev. Lett. 100, 047004 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    Puggioni, D., Filippetti, A., Fiorentini, V.: arXiv:0901.4427v1 [cond-mat.supr-con] 28 Jan (2009)
  13. 13.
    Goswami, P., Rani, M., Kapoor, A.: arXiv:1007.5041 [cond-mat.supr-con] 28 Jul (2010)
  14. 14.
    Eun, J., Chakravarty, S.: Phys. Rev. B 84, 094506 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    Zelli, M., Kallin, C., Berlinsky, A.J.: arXiv:1201.1920v1 [cond-mat.supr-con] 9 Jan (2012)
  16. 16.
    Helm, T., et al.: arXiv:0906.1431v1 [cond-mat.supr-con] 8 Jan (2009)
  17. 17.
    Islam, Z., et al.: arXiv:cond-mat/0312622v1 [cond-mat.supr-con] 24 Dec (2003)
  18. 18.
    Eremin, I., Manske, D.: arXiv:cond-mat/0407487v2 [cond-mat.supr-con] 26 Jul (2004)
  19. 19.
    Segawa, K., Ando, Y.: Phys. Rev. B 69, 104521 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    Pavlenko, P., et al.: arXiv:cond-mat/0605589v2 [cond-mat.supr-con] 26 Dec (2006)
  21. 21.
    Schwingenschlögl, U., Schuster, C.: arXiv:0710.5029v1 [cond-mat.str-el] 26 Oct (2007)
  22. 22.
    Liang, R., et al.: arXiv:cond-mat/0605589v2 [cond-mat.supr-con] 26 Dec (2006)
  23. 23.
    Chang, J., et al.: arXiv:1103.3044v1 [cond-mat.supr-con] 15 Mar (2011)
  24. 24.
    Yao, H., et al.: arXiv:1103.2115v2 [cond-mat.str-el] 17 Aug (2011)
  25. 25.
    Bangura, A.F., et al.: arXiv:1005.0573v1 [cond-mat.supr-con] 4 May (2010)
  26. 26.
    Schabel, M.C., et al.: Phys. Rev. B 57, 6090 (1998) ADSCrossRefGoogle Scholar
  27. 27.
    Lu, D.H., et al.: Phys. Rev. Lett. 86, 4370 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    Gofron, K., et al.: Phys. Rev. Lett. 73, 3302 (1994) ADSCrossRefGoogle Scholar
  29. 29.
    Peets, D.C., et al.: New J. Phys. 9, 28 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    Bouvier, J., Bok, J.: Adv. Condens. Matter Phys. 2010, Article ID 472636 (2010). 9 p. Google Scholar
  31. 31.
    Tavana, A., Akhavan, M.: Eur. Phys. J. B 7, 00396 (2009) Google Scholar
  32. 32.
    Damascelli, A., et al.: Rev. Mod. Phys. 75, 473 (2003) ADSCrossRefGoogle Scholar
  33. 33.
    Campuzano, J.C., et al.: In: Photoemission in the High T c Superconductors, vol. II, pp. 167–265. Springer, Berlin (2004) Google Scholar
  34. 34.
    Nakayama, K., et al.: Phys. Rev. B 75, 014513 (2007) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Yagi, H., et al.: arXiv:1002.0655v1 [cond-mat.supr-con] 3 Fev (2010)
  36. 36.
    Loram, J.W., et al.: Phys. Rev. Lett. 71, 1740 (1993) ADSCrossRefGoogle Scholar
  37. 37.
    Emery, V.J., Kivelson, S.A.: Nature 374, 434 (1995) ADSCrossRefGoogle Scholar
  38. 38.
    Ding, H., et al.: Nature 382, 51 (1996) ADSCrossRefGoogle Scholar
  39. 39.
    Emery, et al.: Phys. Rev. B 56, 6120 (1997) ADSCrossRefGoogle Scholar
  40. 40.
    Curty, P., Beck, H.: Phys. Rev. Lett. 91, 257002 (2003) ADSCrossRefGoogle Scholar
  41. 41.
    McElroy, K.: Nat. Phys. 2, 441 (2006) CrossRefGoogle Scholar
  42. 42.
    Galitski, V., Sachdev, S.: Phys. Rev. B 79, 134512 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    Thompson, L., Stamp, P.C.E.: arXiv:0906.0621v1 [cond-mat.str-el] 2 Jun (2009)
  44. 44.
    Matic, V.M., Lazarov, N.D.: arXiv:0803.4041v1 [cond-mat.supr-con] 28 Mar (2008)
  45. 45.
    Jorgensen, J.D., et al.: Phys. Rev. B 36, 3608 (1987) ADSCrossRefGoogle Scholar
  46. 46.
    Piano, S., et al.: arXiv:cond-mat/0601680v1 [cond-mat.supr-con] 30 Jan (2006)
  47. 47.
    Temmerman, W.M., et al.: Phys. Rev. Lett. 86, 2435 (2001) ADSCrossRefGoogle Scholar
  48. 48.
    Matic, V.M., Lazarov, N.D.: arXiv:cond-mat/0611214 Nov (2006)
  49. 49.
    Zhou, S., et al.: arXiv:cond-mat/0503346v1 [cond-mat.str-el] 14 Mar (2005)
  50. 50.
    Berg, E., et al.: arXiv:0708.3888v3 [cond-mat.supr-con] 29 Jan (2008)
  51. 51.
    Koepernik, K., Eschrig, H.: Phys. Rev. B 59, 1743 (1999) ADSCrossRefGoogle Scholar
  52. 52.
    Opahle, I., Koepernik, K., Eschrig, H.: Phys. Rev. B 60, 14035 (1999) ADSCrossRefGoogle Scholar
  53. 53.
    Eschrig, H.: The Fundamentals of Density Functional Theory, 2nd edn. Edition am Gutenbergplatz, Leipzig (2003) MATHGoogle Scholar
  54. 54.
    Koepernik, K., Velicky, B., Hayn, H., Eschrig, R.: Phys. Rev. B 55, 5717 (1997) ADSCrossRefGoogle Scholar
  55. 55.
    Eschrig, H., Richter, M., Opahle, I.: Relativistic solid state calculations. In: Schwerdtfeger, P. (ed.) Relativistic Electronic Structure Theory, Part 2. Applications, Theoretical and Computational Chemistry, vol. 13, pp. 723–776. Elsevier, Amsterdam (2004) CrossRefGoogle Scholar
  56. 56.
    Eschrig, H., Koepernik, K., Chaplygin, I.: J. Solid State Chem. 176, 482 (2003) ADSCrossRefGoogle Scholar
  57. 57.
    Schwingenschlogl, U., Schuster, C.: Phys. Rev. Lett. 102, 227002 (2009) ADSCrossRefGoogle Scholar
  58. 58.
    Krakauer, H., et al.: J. Supercond. 1, 111 (1988) ADSCrossRefGoogle Scholar
  59. 59.
    Ching, W.Y., et al.: Phys. Rev. Lett. 59, 1333 (1987). In: W.-Y. Ching, P. Rulis, Electronic Structure Methods for Complex Materials (The Orthogonalized Linear Combination of Atomic Orbitals), Oxford University Press, 1st edn. published in 2012 ADSCrossRefGoogle Scholar
  60. 60.
    Santi, G.R.: Ab-initio calculations of electronic structure and properties of some perovskite oxides: high-T c superconductors and magnetic materials. Thesis N 3026, University of Genève, Faculty of Sciences, Department of Physics, Switzerland (1998) Google Scholar
  61. 61.
    Eun, J., Wang, Z., Chakravarty, S.: arXiv:1203.0338v1 [cond-mat.supr-con] 1 Mar (2012)
  62. 62.
    Bena, C., et al.: arXiv:cond-mat/0405468v1 [cond-mat.supr-con] 20 May (2004)
  63. 63.
    Nakayama, K., et al.: Phys. Rev. B 75, 014513 (2007) MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    Tsei, C.C., Kirtley, J.R.: Physica C, Supercond., 367(1–4), 1–8 (2002) ADSCrossRefGoogle Scholar
  65. 65.
    Tsei, C.C., et al.: Phys. Rev. Lett. 73, 593 (1994) ADSCrossRefGoogle Scholar
  66. 66.
    Tahir–Kheli, J.: Phys. Rev. B 58, 12307–12322 (1998) ADSCrossRefGoogle Scholar
  67. 67.
    Markiewicz, R.S.: J. Phys. Chem. Solids 58, 1179 (1997) ADSCrossRefGoogle Scholar
  68. 68.
    Tamai, A., et al.: Phys. Rev. Lett. 101, 026407 (2008) ADSCrossRefGoogle Scholar
  69. 69.
    McChesney, J.L., et al.: Phys. Rev. Lett. 104, 136803 (2010) ADSCrossRefGoogle Scholar
  70. 70.
    Nakashima, Y., et al.: arXiv:1107.1960v1 [cond-mat.supr-con] 11 Jul (2011)
  71. 71.
    Okamoto, S., Furukawa, N.: arXiv:1205.6150v1 [cond-mat.str-el] 28 May (2012)
  72. 72.
    Okawa, M., et al.: arXiv:0811.0479v2 [cond-mat.supr-con] 19 Mar (2009)
  73. 73.
    Guritanu, V., et al.: Phys. Rev. B 70, 184526 (2004) ADSCrossRefGoogle Scholar
  74. 74.
    Mourachkine, A.: J. Supercond., Inc. Nov. Magn., 17, 711–724 (2004) ADSCrossRefGoogle Scholar
  75. 75.
    Cava, R.J., et al.: Physica C 153–155, 560 (1988) CrossRefGoogle Scholar
  76. 76.
    Alp, E.E.: Phys. Rev. B 40, 385 (1989) Google Scholar
  77. 77.
    Filippetti, A., Fiorentin, V.: Eur. Phys. J. B 71, 139–183 (2009) ADSCrossRefGoogle Scholar
  78. 78.
    Atkinson, W.A.: arXiv:0808.0030v1 [cond-mat.supr-con] 31 Jul (2008)
  79. 79.
    Ngai, J.H., et al.: Phys. Rev. Lett. 98, 177003 (2007) ADSCrossRefGoogle Scholar
  80. 80.
    Fisher, O., et al.: Rev. Mod. Phys. 79, 353 (2007) ADSCrossRefGoogle Scholar
  81. 81.
    Metzner, W., et al.: arXiv:cond-mat/0303154v1 [cond-mat.str-el] 9 Mar (2003)
  82. 82.
    van der Marel, D., et al.: Physica C 153, 1445–1446 (1988) ADSCrossRefGoogle Scholar
  83. 83.
    Zegenhagen, J., et al.: American Physical Society. 2008 APS March Meeting, Mar 10–14 (2008) Google Scholar
  84. 84.
    Bok, J., Bouvier, J.: J. Supercond. 13(5), 781–787 (2000) CrossRefGoogle Scholar
  85. 85.
    Cho, A.: Science 314, 5802 (2006) Google Scholar
  86. 86.
    Bouvier, J., Bok, J.: Adv. Condens. Matter Phys. 2010, Article ID 472636 (2010) Google Scholar
  87. 87.
    Piriou, A., et al.: Nat. Commun. 1(2), 221 (2011) CrossRefGoogle Scholar
  88. 88.
    Bok, J., Bouvier, J.: J. Supercond. Nov. Magn. 25(3), 657–667 (2012) CrossRefGoogle Scholar
  89. 89.
    Morr, D.K., Pines, D.: arXiv:cond-mat/9805107v1 [cond-mat.str-el] 9 May (1998)
  90. 90.
    Pailhes, S., et al.: Phys. Rev. Lett. 91, 237002 (2003) ADSCrossRefGoogle Scholar
  91. 91.
    Pailhes, S., et al.: Phys. Rev. Lett. 93, 167001 (2004) ADSCrossRefGoogle Scholar
  92. 92.
    Hao, Z., Chubukov, A.V.: Phys. Rev. B 79, 224513 (2009) ADSCrossRefGoogle Scholar
  93. 93.
    Yu, G., Li, Y., Motoyama, E.M., Greven, M.: Nat. Phys. 5, 873–875 (2009) CrossRefGoogle Scholar
  94. 94.
    Das, T., Markiewicz, R.S., Bansil, A.: arXiv:1110.0756v1 [cond-mat.supr-con] 4 Oct (2011)
  95. 95.
    Kordyuk, A.A., et al.: Phys. Rev. Lett. 89, 077003 (2002) ADSCrossRefGoogle Scholar
  96. 96.
    Gromko, A.D., et al.: arXiv:cond-mat/0205385v1 [cond-mat.supr-con] 17 May (2002)
  97. 97.
    Cuk, T., et al.: Phys. Status Solidi (b) 242(1), 11–29 (2005) ADSCrossRefGoogle Scholar
  98. 98.
    Gromko, A.D., et al.: Phys. Rev. B 68, 174520 (2003) ADSCrossRefGoogle Scholar
  99. 99.
    Millis, A.J., Monien, H., Pines, D.: Phys. Rev. B 42, 167 (1990) ADSCrossRefGoogle Scholar
  100. 100.
    Bedell, K.S., et al.: Addison-Wesley, Reading (1994) Google Scholar
  101. 101.
    Doniach, S., Engelsberg, S.: Phys. Rev. Lett. 17, 750 (1966) ADSCrossRefGoogle Scholar
  102. 102.
    Scalapino, D.J.: arXiv:cond-mat/9908287v2 [cond-mat.str-el] 30 Aug (1999)
  103. 103.
    Berk, N.F., Schrieffer J.R.: Phys. Rev. Lett. 17, 433 (1966) ADSCrossRefGoogle Scholar
  104. 104.
    Carbotte, J.P., et al.: Rep. Prog. Phys. 74, 066501 (2011) ADSCrossRefGoogle Scholar
  105. 105.
    Sewak Singh, R., et al.: J. Pure Appl. Ind. Phys. 1(3), 192–199 (2011) Google Scholar
  106. 106.
    Manske, D., et al.: Phys. Rev. B 67, 134520 (2003) ADSCrossRefGoogle Scholar
  107. 107.
    Manske, D.: Theory of Unconventional Superconductors. Springer, Berlin (2004) CrossRefGoogle Scholar
  108. 108.
    Dahm, T., et al.: Nat. Phys. 5, 217 (2009) CrossRefGoogle Scholar
  109. 109.
    Kordyuk, A.A., et al.: Eur. Phys. J. Spec. Top. 188, 153–162 (2010) CrossRefGoogle Scholar
  110. 110.
    Ortenzi, L., et al.: Phys. Rev. B 83, 100505(R) (2011) ADSCrossRefGoogle Scholar
  111. 111.
    Urbanik, G., et al.: Eur. Phys. J., B Cond. Matter Complex Syst. 69, 483–489 (2009) CrossRefGoogle Scholar
  112. 112.
    Zabolotnyy, V.B., et al.: Phys. Rev. B 85, 064507 (2012) ADSCrossRefGoogle Scholar
  113. 113.
    Derro, D.J., et al.: Phys. Rev. Lett. 88, 097002 (2002) ADSCrossRefGoogle Scholar
  114. 114.
    Hoogenboom, B.W., et al.: arXiv:cond-mat/0212329v1 [cond-mat.supr-con] 13 Dec (2002)
  115. 115.
    Lu, D.H., et al.: Phys. Rev. Lett. 86, 4370 (2001) ADSCrossRefGoogle Scholar
  116. 116.
    Aiura, Y., et al.: Phys. Rev. Lett. 93, 117005 (2004) ADSCrossRefGoogle Scholar
  117. 117.
    Borisenko, S.V., et al.: Phys. Rev. Lett. 96, 117004 (2006) ADSCrossRefGoogle Scholar
  118. 118.
    Ekino, T., et al.: J. Phys. Condens. Matter 20, 425218 (2008) ADSCrossRefGoogle Scholar
  119. 119.
    Campuzano, J.C., et al.: J. Low Temp. Phys. 95, 245 (1994) ADSCrossRefGoogle Scholar
  120. 120.
    Zhao, G.-M.: Philos. Mag. 84, 3869 (2004) ADSCrossRefGoogle Scholar
  121. 121.
    Liechtenstein, A.I.: arXiv:cond-mat/9509101v1 16 Sep (1995)
  122. 122.
    Santi, G., et al.: arXiv:supr-con/9602002v1 23 Feb (1996)
  123. 123.
    Wolf, W., Herzig, P.: J. Phys. Condens. Matter 12, 4535 (2000) ADSCrossRefGoogle Scholar
  124. 124.
    Miwa, K., Fukumoto, A.: Phys. Rev. B 65, 155114 (2002) ADSCrossRefGoogle Scholar
  125. 125.
    Quijano, R., de Coss, R.: Phys. Rev. B 80, 184103 (2009) ADSCrossRefGoogle Scholar
  126. 126.
    Ikeda, M., et al.: arXiv:0803.4059v1 [cond-mat.supr-con] 28 Mar (2008)
  127. 127.
    Bergman, D.L., Pereg-Barnea, T.: Materials 4, 1835 (2011) ADSCrossRefGoogle Scholar
  128. 128.
    Phillips, N.E., et al.: In: Brewer, D.F. (ed.) Prog. in Low Temp. Phys. XIII. Elsevier Science Publishers B.V., Amsterdam (1992) Google Scholar
  129. 129.
    Junod, A.: In: Ginsberg, D. (ed.) Physical Properties of HTSC II. World Scientific, Singapore (1990) Google Scholar
  130. 130.
    Loram, J.W., et al.: Phys. Rev. Lett. 71, 1740 (1993) ADSCrossRefGoogle Scholar
  131. 131.
    Dow, J.D., et al.: J. Supercond. Nov. Magn. 23, 641–644 (2010) CrossRefGoogle Scholar
  132. 132.
    McMillan, W.L.: Phys. Rev. 167, 331 (1968) ADSCrossRefGoogle Scholar
  133. 133.
    Wang, Y., Plackowski, T., Junod, A.: Physica C 355, 179 (2001) ADSCrossRefGoogle Scholar
  134. 134.
    Mann, et al.: arXiv:0802.4110v1 [cond-mat.supr-con] 28 Feb (2008)
  135. 135.
    Ruiz, H.S., Badìa–Majós, A.: arXiv:1005.4770v2 [cond-mat.supr-con] 17 Feb (2011)
  136. 136.
    Zhao, G.: Phys. Rev. B 71, 104517 (2005) ADSCrossRefGoogle Scholar
  137. 137.
    Honerkamp, C., et al.: arXiv:cond-mat/0605161v1 [cond-mat.str-el] 6 May (2006)
  138. 138.
    Anderson, P.W., et al.: J. Phys. Condens. Matter 16, R755 (2004) ADSCrossRefGoogle Scholar
  139. 139.
    Hague, J.P.: arXiv:0901.1047v1 [cond-mat.supr-con] 8 Jan (2009)
  140. 140.
    Aminov, L.K., et al.: Physica C 30–34, 349 (2001) MathSciNetGoogle Scholar
  141. 141.
    Ikebe, M., et al.: Phys. Status Solidi (b) 209, 413 (1998) ADSCrossRefGoogle Scholar
  142. 142.
    Raichle, M., et al.: arXiv:1109.5511v1 [cond-mat.str-el] 26 Sep (2011)
  143. 143.
    Rosner, H., et al.: Phys. Rev. Lett. 88, 027001 (2002) ADSCrossRefGoogle Scholar
  144. 144.
    Shein, I.R., et al.: arXiv:cond-mat/0107010v2 [cond-mat.supr-con] 3 Jul (2001)
  145. 145.
    Eguchi, G., et al.: arXiv:1204.3796v2 [cond-mat.supr-con] 28 Jun (2012)
  146. 146.
    Tse, J.S., et al.: Phys. Rev. B 69, 132101 (2004) ADSCrossRefGoogle Scholar
  147. 147.
    Qian, M.C., et al.: J. Appl. Phys. 85, 4765 (1999) ADSCrossRefGoogle Scholar
  148. 148.
    Yunoki, S., et al.: arXiv:0705.0498v1 [cond-mat.str-el] 3 May (2007)
  149. 149.
    Szotek, Z., et al.: J. Phys. Condens. Matter 13, 8625–8652 (2001) ADSCrossRefGoogle Scholar
  150. 150.
    Baňacký, P.: Adv. Condens. Matter Phys. 2010, 21 (2010) Google Scholar
  151. 151.
    Baňacký, P.: J. Phys. Chem. Solids 69, 2696 (2010) CrossRefGoogle Scholar
  152. 152.
    Baňacký, P.: Advances in the Theory of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol. 22, p. 481 (2012) CrossRefGoogle Scholar
  153. 153.
    Fournier, D., et al.: Nat. Phys. 6, 905–911 (2010) CrossRefGoogle Scholar
  154. 154.
    Liu, C., et al.: arXiv:0806.2147v3 [cond-mat.supr-con] 17 Jun (2008)
  155. 155.
    Bulut, N., et al.: Phys. Rev. B 50, 7215 (1994) ADSCrossRefGoogle Scholar
  156. 156.
    Shen, Z.X., et al.: Philos. Mag. A 82, 1349 (2002) ADSGoogle Scholar
  157. 157.
    Hong, S., et al.: Physica C 470, 383 (2010) ADSCrossRefGoogle Scholar
  158. 158.
    Norman, M.R., et al.: Nature 392, 157 (1998) ADSCrossRefGoogle Scholar
  159. 159.
    Shen, K., et al.: Science 307, 901 (2005) ADSCrossRefGoogle Scholar
  160. 160.
    Kanigel, A., et al.: Nat. Phys. 2, 447–451 (2006) CrossRefGoogle Scholar
  161. 161.
    Andersen, O.K., et al.: J. Phys. Chem. Solids 56, 1573 (1995) ADSCrossRefGoogle Scholar
  162. 162.
    Hossain, M.A., et al.: Nat. Phys. 4, 527 (2008) CrossRefGoogle Scholar
  163. 163.
    Lee, E., et al.: J. Korean Phys. Soc. 53, 3348 (2008) ADSCrossRefGoogle Scholar
  164. 164.
    Hong, S., Cheong, H., Park, G.: Physica C 470, 383 (2010) ADSCrossRefGoogle Scholar
  165. 165.
    Nikšić, G., et al.: Physica B 407, 1831 (2012) ADSCrossRefGoogle Scholar
  166. 166.
    Dow, J.D., Harshman, D.R.: Int. J. Mod. Phys. B 21, 3086 (2007) ADSCrossRefGoogle Scholar
  167. 167.
    Riggs, S.C., et al.: Nat. Phys. 7, 332–335 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Laboratoire LEREC, Département de PhysiqueFaculté des Sciences Université BADJIMokhtarAlgeria
  2. 2.Faculté des Sciences et de l’IngénierieUniversité du 8 Mai 1945GuelmaAlgeria

Personalised recommendations