Recent Achievements on the Physics of High-T C Superconductor Josephson Junctions: Background, Perspectives and Inspiration

  • Francesco TafuriEmail author
  • Davide Massarotti
  • Luca Galletti
  • Daniela Stornaiuolo
  • Domenico Montemurro
  • Luigi Longobardi
  • Procolo Lucignano
  • Giacomo Rotoli
  • Giovanni Piero Pepe
  • Arturo Tagliacozzo
  • Floriana Lombardi
Review Article


Coherent passage of Cooper pairs in a Josephson junction (JJ) above the liquid nitrogen temperature has been the first impressive revolutionary effect induced by high critical temperature superconductors (HTS) in the domain of the study of Josephson effect (JE). But this has been only the start. A d-wave order parameter has lead to significant novel insights in the physics of the JE turning into a device the notion of a π-junction. Spontaneous currents in a frustrated geometry, Andreev bound states, long-range proximity effect have rapidly become standard terms in the study of the JE, standing as a reference bench for conventional systems based on low critical temperature superconductors (LTS) and inspiring analogies for junctions based on novel superconductors discovered in the meantime. The extreme richness of the physics of HTS JJs has not been adequately supported by the expected impact in the applications, the main reason lying in the complexity of these materials and in the consequent unsatisfactory yield and reproducibility of the performances of the JJs within the required limits. The continuous progress in material science, and specifically in the realization of oxide multi-layers, and in nanotechnologies applied to superconductors, accompanied by the advances in a better understanding of the properties of HTS and of HTS devices, has as a matter of fact opened possible novel scenarios and interest in the field. We intend to give a brief overview on interesting new problems concerning HTS JJs of inspiration also for other systems. We also review some ideas and experimental techniques on macroscopic quantum decay phenomena occurring in Josephson structures. The attention is mainly addressed to intermediate levels of dissipation, which characterize a large majority of low critical current Josephson devices and are therefore an unavoidable consequence of nanotechnology applied more and more to Josephson devices.


Josephson effect High TC superconductors Macroscopic quantum phenomena Nanostructures 



Special thanks to John Kirtley for sharing so many common interests in several experiments reviewed in this manuscript. We would also like to thank Thilo Bauch and Chang Tsuei for valuable discussions on the topics of this contribution. This work is supported by MIUR PRIN 2009 under the project SuFET based on nanowires and HTS. We also acknowledge partial support by STREP Macroscopic Interference Devices for atomic and Solid State Physics: Quantum Control of Supercurrents and by a Marie Curie International Reintegration Grant No. 248933 hybMQC within the 7th European Community Framework Programme.


  1. 1.
    Bednorz, J.G., Muller, K.A.: Possible high T c superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    Josephson, B.D.: Possible new effects in superconducting tunnelling. Phys. Lett. 1(7), 251 (1962) ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Kulik, I.O., Yanson, K.: The Josephson Effect in Superconductive Tunneling Structures. Israel Program of Scientific Translations, Jerusalem (1972) Google Scholar
  4. 4.
    Barone, A., Paternó, G.: Physics and Applications of the Josephson Effect. Wiley, New York (1982) CrossRefGoogle Scholar
  5. 5.
    Likharev, K.K.: Dynamics of Josephson Junctions and Circuits. Gordon & Breach, New York (1986) Google Scholar
  6. 6.
    Likharev, K.K.: Superconducting weak links. Rev. Mod. Phys. 51, 101 (1979) ADSCrossRefGoogle Scholar
  7. 7.
    Caldeira, A.O., Leggett, A.J.: Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211 (1981) ADSCrossRefGoogle Scholar
  8. 8.
    Leggett, A.J.: Prospects in ultralow temperature physics. J. Phys. (Paris) Colloq. 39, C6-1264 (1980) CrossRefGoogle Scholar
  9. 9.
    Caldeira, A.O., Leggett, A.J.: Quantum tunneling in a dissipative system. Ann. Phys. (N.Y.) 149, 374 (1983) ADSCrossRefGoogle Scholar
  10. 10.
    Andreev, A.F.: Thermal conductivity of the intermediate state of superconductors. Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys. JETP 19, 1228 (1964)] Google Scholar
  11. 11.
    Kulik, I.O.: Macroscopic quantization and the proximity effect in SNS junctions. Sov. Phys. JETP 30, 944 (1969). Zh. Eksp. Teor. Fiz. 30, 944 (1969) ADSGoogle Scholar
  12. 12.
    Hu, C.-R.: Midgap surface states as a novel signature for \(d_{xa^{2}-xb^{2}}\)-wave superconductivity. Phys. Rev. Lett. 72, 1526 (1994) ADSCrossRefGoogle Scholar
  13. 13.
    Kashiwaya, S., Tanaka, Y.: Tunnelling effects on surface bound states in unconventional superconductors. Rep. Prog. Phys. 63, 1641 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    Lofwander, T., Shumeiko, V., Wendin, G.: Andreev bound states in high-T c superconducting junctions. Supercond. Sci. Technol. 14, R53 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    Tsuei, C.C., Kirtley, J.R.: Phase-sensitive evidence for d-wave pairing symmetry in electron-doped cuprate superconductors. Rev. Mod. Phys. 72, 969 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    Van Harlingen, D.J.: Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors: evidence for \(d_{x^{2}-y^{2}}\) symmetry. Rev. Mod. Phys. 67, 515 (1995) ADSCrossRefGoogle Scholar
  17. 17.
    Van Duzer, T., Turner, C.W.: Principles of Superconductive Devices and Circuits. Elsevier, New York (1991) Google Scholar
  18. 18.
    Clarke, J., Wilhelm, F.: Superconducting quantum bits. Nature 453, 1031 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    Hilgenkamp, H., Mannhart, J.: Grain boundaries in high-T c superconductors. Rev. Mod. Phys. 74, 485 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    Tafuri, F., Kirtley, J.R.: High T c superconductor weak links. Rep. Prog. Phys. 68, 2573 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    Kirtley, J.R., Tafuri, F.: In: Brooks, J.S., Schrieffer, J.R. (eds.) Handbook of High-Temperature Superconductivity: Theory and Experiment, pp. 19–85. Springer, Berlin (2007) CrossRefGoogle Scholar
  22. 22.
    Mannhart, J., Chaudhari, P., Dimos, D., Tsuei, C.C., McGuire, T.M.: Critical currents in [001] grains and across their tilt boundaries in YBa2Cu3O7 films. Phys. Rev. Lett. 61, 2476 (1988) ADSCrossRefGoogle Scholar
  23. 23.
    Chaudari, P., Mannhart, J., Dimos, D., Tsuei, C.C., Chi, C.C., Oprysko, M.M., Scheuermann, M.: Direct measurement of the superconducting properties of single grain boundaries in Y1Ba2Cu3O7−δ. Phys. Rev. Lett. 60, 1653 (1988) ADSCrossRefGoogle Scholar
  24. 24.
    Dimos, D., Chaudhari, P., Mannhart, J.: Superconducting transport properties of grain boundaries in YBa2Cu3O7 bicrystals. Phys. Rev. B 41, 4038 (1990) ADSCrossRefGoogle Scholar
  25. 25.
    Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., Hosono, H.: Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128, 10012 (2006) CrossRefGoogle Scholar
  26. 26.
    Takahashi, H., Igawa, K., Arii, K., Kamihara, Y., Hirano, M., Hosono, H.: Superconductivity at 43 K in an iron-based layered compound LaO1−xFexAs. Nature 453, 376 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    Seidel, P.: Josephson effects in iron based superconductors. Supercond. Sci. Technol. 24, 043001 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    Stepantsov, E., Tarasov, M., Naito, M., Tsukada, A., Winkler, D.: Grain boundary weak link in a-b plane in MgB2 film. Appl. Phys. Lett. 89, 213111 (2006) ADSCrossRefGoogle Scholar
  29. 29.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature 410, 63 (2001) ADSCrossRefGoogle Scholar
  30. 30.
    Cui, Y., Chen, K., Li, Q., Xi, X.X., Rowell, J.M.: Degradation-free interfaces in MgB2/insulator/Pb Josephson tunnel junctions. Appl. Phys. Lett. 89, 202513 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    Di Capua, R., Aebersold, H.U., Ferdeghini, C., Ferrando, V., Orgiani, P., Putti, M., Salluzzo, M., Vaglio, R., Xi, X.X.: Role of interband scattering in neutron irradiated MgB2 thin films by scanning tunneling spectroscopy measurements. Phys. Rev. B 75, 014515 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    Iavarone, M., Di Capua, R., Koshelev, A.E., Kwok, W.K., Chiarella, F., Vaglio, R., Kang, W.N., Choi, E.M., Kim, H.J., Lee, S.I., Pogrebnyakov, A.V., Redwing, J.M., Xi, X.X.: Effect of disorder in MgB2 thin films. Phys. Rev. B 71, 214502 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    Rubano, A., Paparo, D., Miletto, F., Scotti di Uccio, U., Marrucci, L.: Recombination kinetics of a dense electron–hole plasma in strontium titanate. Phys. Rev. B 76, 125115 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    Char, K., Colclough, M.S., Garrison, S.M., Newman, N., Zaharchuk, G.: Biepitaxial grain boundary junctions in YBa2Cu3O7. Appl. Phys. Lett. 59, 733 (1991) ADSCrossRefGoogle Scholar
  35. 35.
    Tafuri, F., Miletto Granozio, F., Carillo, F., Di Chiara, A., Verbist, K., Van Tendeloo, G.: Microstructure and Josephson phenomenology in 45° tilt and twist YBaCuO artificial grain boundaries. Phys. Rev. B 59, 11523 (1999) ADSCrossRefGoogle Scholar
  36. 36.
    Tafuri, F., Carillo, F., Lombardi, F., Miletto Granozio, F., Ricci, F., Scotti di Uccio, U., Barone, A., Testa, G., Sarnelli, E., Kirtley, J.R.: Feasibility of biepitaxial YBaCuO Josephson junctions for fundamental studies and potential circuit implementation. Phys. Rev. B 62, 14431 (2000) ADSCrossRefGoogle Scholar
  37. 37.
    Di Chiara, A., Lombardi, F., Miletto Granozio, F., Scotti di Uccio, U., Tafuri, F., Valentino, M.: YBaCuO grain boundary Josephson junctions with a MgO seed layer. IEEE Trans. Appl. Supercond. 7, 3327 (1997) CrossRefGoogle Scholar
  38. 38.
    Lombardi, F., Tafuri, F., Ricci, F., Miletto Granozio, F., Barone, A., Testa, G., Sarnelli, E., Kirtley, J.R., Tsuei, C.C.: Intrinsic d-wave effects in YBaCuO grain boundary Josephson junctions. Phys. Rev. Lett. 89, 207001 (2002) ADSCrossRefGoogle Scholar
  39. 39.
    Miletto Granozio, F., Scotti di Uccio, U., Lombardi, F., Ricci, F., Bevilacqua, F., Ausanio, G., Carillo, F., Tafuri, F.: Structure and properties of symmetric and asymmetric YBaCuO Josephson junctions realized by a novel CeO2-based biepitaxial technique. Phys. Rev. B 67, 184506 (2003) ADSCrossRefGoogle Scholar
  40. 40.
    Stornaiuolo, D., Papari, G., Cennamo, N., Carillo, F., Longobardi, L., Massarotti, D., Barone, A., Tafuri, F.: High quality factor HTS Josephson junctions on low loss substrates. Supercond. Sci. Technol. 24, 045008 (2011) ADSCrossRefGoogle Scholar
  41. 41.
    Bauch, T., Lombardi, F., Tafuri, F., Rotoli, G., Barone, A., Delsing, P., Cleason, T.: Macroscopic quantum tunneling in d-wave YBaCuO Josephson junctions. Phys. Rev. Lett. 94, 087003 (2005) ADSCrossRefGoogle Scholar
  42. 42.
    Bauch, T., Lindström, T., Tafuri, F., Rotoli, G., Delsing, P., Claeson, T., Lombardi, F.: Quantum dynamics of a d-wave Josephson junction. Science 311, 5757 (2006) CrossRefGoogle Scholar
  43. 43.
    Longobardi, L., Massarotti, D., Stornaiuolo, D., Galletti, L., Rotoli, G., Lombardi, F., Tafuri, F.: Direct transition from quantum escape to phase diffusion regime in YBaCuO biepitaxial Josephson junctions. Phys. Rev. Lett. 109, 050601 (2012) ADSCrossRefGoogle Scholar
  44. 44.
    Mitchell, E.E., Macfarlane, J.C., Foley, C.P.: Transport properties of variable-angle YBCO step-edge junctions in the ab plane. Supercond. Sci. Technol. 24, 055004 (2011) ADSCrossRefGoogle Scholar
  45. 45.
    Mitchell, E.E., Foley, C.P.: YBCO step-edge junctions: influence of morphology on junction transport. IEEE Trans. Appl. Supercond. 21, 371 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    Stornaiuolo, D., Rotoli, G., Cedergren, K., Born, D., Bauch, T., Lombardi, F., Tafuri, F.: Submicron YBaCuO biepitaxial Josephson junctions: d-wave effects and phase dynamics. J. Appl. Phys. 107, 11390 (2010) CrossRefGoogle Scholar
  47. 47.
    Ohtomo, A., Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423 (2004) ADSCrossRefGoogle Scholar
  48. 48.
    Mannhart, J., Blank, D.H.A., Hwang, H.Y., Millis, A.J., Triscone, J.-M.: Two-dimensional electron gases at oxide interfaces. Mater. Res. Soc. Bull. 33, 1027 (2008) CrossRefGoogle Scholar
  49. 49.
    Mannhart, J., Schlom, D.G.: Oxide interfaces—an opportunity for electronics. Science 327, 1607 (2010) ADSCrossRefGoogle Scholar
  50. 50.
    Radovic, M., Salluzzo, M., Ristic, Z., Di Capua, R., Lampis, N., Vaglio, R., Miletto Granozio, F.: In situ investigation of the early stage of TiO2 epitaxy on (001) SrTiO3. J. Chem. Phys. 135, 034705 (2011) ADSCrossRefGoogle Scholar
  51. 51.
    Antognazza, L., Moeckly, B.H., Geballe, T.H., Char, K.: Properties of high-T c Josephson junctions with Y0.7Ca0.3Ba2Cu3O7−δ barrier layers. Phys. Rev. B 52, 4559 (1995) ADSCrossRefGoogle Scholar
  52. 52.
    Gurvitch, M., Valles, J.J.M., Cucolo, A.M., Dynes, R.C., Garno, J.P., Schneemeyer, L.F., Waszcak, J.V.: Reproducible tunneling data on chemically etched single crystals of YBa2Cu3O7. Phys. Rev. Lett. 63, 1008 (1989) ADSCrossRefGoogle Scholar
  53. 53.
    Wollman, D.A., Van Harlingen, D.J., Lee, W.C., Ginsberg, D.M., Leggett, A.J.: Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134 (1993) ADSCrossRefGoogle Scholar
  54. 54.
    Wollman, D.A., Van Harlingen, D.J., Giapintzakis, J., Ginsberg, D.M.: Evidence for \(d_{x^{2}-y^{2}}\) pairing from the magnetic field modulation of YBa2Cu3O7-Pb Josephson junctions. Phys. Rev. Lett. 74, 797 (1995) ADSCrossRefGoogle Scholar
  55. 55.
    Katz, A.G., Sun, A.G., Dynes, R.C., Char, K.: Fabrication of all thin-film YBa2Cu3O7−δ/Pb Josephson tunnel junctions. Appl. Phys. Lett. 66, 105 (1995) ADSCrossRefGoogle Scholar
  56. 56.
    Smilde, H.J.H., Ariando, D.H., Blank, A., Gerritsma, G.J., Hilgenkamp, H., Rogalla, H.: d-wave induced Josephson current counterflow in YBa2Cu3O7/Nb zigzag junctions. Phys. Rev. Lett. 88, 057004 (2002) ADSCrossRefGoogle Scholar
  57. 57.
    Bozovic, I., Logvenov, G., Verhoeven, M.A.J., Caputo, P., Goldobin, E., Geballe, T.H.: No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor. Nature 422, 873 (2003) ADSCrossRefGoogle Scholar
  58. 58.
    Virshup, G.F., Klusmeier-Brown, M.E., Bozovic, I., Eckstein, J.N.: Hysteretic, high T c Josephson junctions using heterostructure trilayer films grown by molecular beam epitaxy. Appl. Phys. Lett. 60, 2288 (1992) ADSCrossRefGoogle Scholar
  59. 59.
    Klusmeier-Brown, M.E., Virshup, G.F., Bozovic, I., Eckstein, J.N., Ralls, K.S.: Engineering of ultrathin barriers in high T c, trilayer Josephson junctions. Appl. Phys. Lett. 60, 2806 (1992) ADSCrossRefGoogle Scholar
  60. 60.
    Bozovic, I., Logvenov, G., Verhoeven, M.A.J., Caputo, P., Goldobin, E., Beasley, M.R.: Giant proximity effect in cuprate superconductors. Phys. Rev. Lett. 93, 157002 (2004) ADSCrossRefGoogle Scholar
  61. 61.
    Demler, E., Berlinsky, A.J., Kallin, C., Arnold, G.B., Beasley, M.R.: Proximity effect and Josephson coupling in the SO(5) theory of high-T c superconductivity. Phys. Rev. Lett. 80, 2917 (1998) ADSCrossRefGoogle Scholar
  62. 62.
    den Hartog, B.C., Berlinsky, A.J., Kallin, C.: Properties of superconductor–antiferromagnet–superconductor Josephson junctions in SO(5) theory. Phys. Rev. B 59, R11645 (1999) ADSCrossRefGoogle Scholar
  63. 63.
    Decca, R.S., Drew, H.D., Osquiguil, E., Maiorov, B., Guimpel, J.: Anomalous proximity effect in underdoped YBa2Cu3O6+x Josephson junctions. Phys. Rev. Lett. 85, 3708 (2000) ADSCrossRefGoogle Scholar
  64. 64.
    Kresin, V., Ovchinnikov, Yu., Wolf, S.: Giant Josephson proximity effect. Appl. Phys. Lett. 83, 722 (2003) ADSCrossRefGoogle Scholar
  65. 65.
    Kleiner, R., Stenmeyer, F., Kunkel, G., Muller, P.: Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 2394 (1992) ADSCrossRefGoogle Scholar
  66. 66.
    Kleiner, R., Muller, P.: Intrinsic Josephson effects in high-T c superconductors. Phys. Rev. B 49, 1327 (1994) ADSCrossRefGoogle Scholar
  67. 67.
    Yurgens, A.A.: Intrinsic Josephson junctions: recent developments. Supercond. Sci. Technol. 13, R85 (2000) ADSCrossRefGoogle Scholar
  68. 68.
    Wang, H.B., Wu, P.H., Yamashita, T.: Stacks of intrinsic Josephson junctions singled out from inside Bi2Sr2CaCu2O8+x single crystals. Appl. Phys. Lett. 78, 4010 (2001) ADSCrossRefGoogle Scholar
  69. 69.
    Krasnov, V.M., Golod, T., Bauch, T., Delsing, P.: Anticorrelation between temperature and fluctuations of the switching current in moderately damped Josephson junctions. Phys. Rev. B 76, 224517 (2007) ADSCrossRefGoogle Scholar
  70. 70.
    Krasnov, V.M., Bauch, T., Intiso, S., Hurfeld, E., Akazaki, T., Takayanagi, H., Delsing, P.: Collapse of thermal activation in moderately damped Josephson junctions. Phys. Rev. Lett. 95, 157002 (2005) ADSCrossRefGoogle Scholar
  71. 71.
    Tsuei, C.C., Kirtley, J.R., Chi, C.C., Yu-Jahnes, L.S., Gupta, A., Shaw, T., Sun, J.Z., Ketchen, M.B.: Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7−δ. Phys. Rev. Lett. 73, 593 (1994) ADSCrossRefGoogle Scholar
  72. 72.
    Ryazanov, V.V., Oboznov, V.A., Veretennikov, A.V., Rusanov, A.Yu.: Intrinsically frustrated superconducting array of superconductor-ferromagnet-superconductor π junctions. Phys. Rev. B 65, 020501(R) (2001) CrossRefGoogle Scholar
  73. 73.
    Bauer, A., Bentner, J., Aprili, M., Della Rocca, M.L., Reinwald, M., Wegscheider, W., Strunk, C.: Spontaneous supercurrent induced by ferromagnetic π junctions. Phys. Rev. Lett. 92, 217001 (2004) ADSCrossRefGoogle Scholar
  74. 74.
    Buzdin, A.I.: Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935976 (2005) CrossRefGoogle Scholar
  75. 75.
    Khaire, T.S., Khasawneh, M.A., Pratt, W.P., Birge, N.O.: Observation of spin-triplet superconductivity in Co-based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010) ADSCrossRefGoogle Scholar
  76. 76.
    Kawabata, S., Asano, Y., Tanaka, Y., Golubov, A.A., Kashiwaya, S.: Josephson π state in a ferromagnetic insulator. Phys. Rev. Lett. 104, 117002 (2010) ADSCrossRefGoogle Scholar
  77. 77.
    Senapati, K., Blamire, M.G., Barber, Z.H.: Spin-filter Josephson junctions. Nat. Mater. 10, 849 (2011) ADSCrossRefGoogle Scholar
  78. 78.
    Walker, M.B., Luettmer-Strathman, J.: Josephson tunneling in high-T c superconductors. Phys. Rev. B 54, 588 (1996) ADSCrossRefGoogle Scholar
  79. 79.
    Sigrist, M., Rice, T.M.: Paramagnetic effect in high T c superconductors—a hint for d-wave superconductivity. J. Phys. Soc. Jpn. 61, 4283 (1992) ADSCrossRefGoogle Scholar
  80. 80.
    Hilgenkamp, H.: Pi-phase shift Josephson structures. Supercond. Sci. Technol. 21, 034011 (2008) ADSCrossRefGoogle Scholar
  81. 81.
    Sigrist, M.: Time-reversal symmetry breaking states in high-temperature superconductors. Prog. Theor. Phys. 99, 899 (1998) ADSCrossRefGoogle Scholar
  82. 82.
    Goldobin, E., Koelle, D., Kleiner, R., Buzdin, A.: Josephson junctions with second harmonic in the current-phase relation: properties of ϕ junctions. Phys. Rev. B 76, 224523 (2007) ADSCrossRefGoogle Scholar
  83. 83.
    Fu, L., Kane, C.L., Mele, E.J.: Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008) ADSCrossRefGoogle Scholar
  84. 84.
    Fu, L., Kane, C.L.: Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction. Phys. Rev. B 79, 161408(R) (2009) ADSCrossRefGoogle Scholar
  85. 85.
    Tanaka, Y., Yokoyama, T., Nagaosa, N.: Manipulation of the Majorana fermion, Andreev reflection, and Josephson current on topological insulators. Phys. Rev. Lett. 103, 107002 (2009) ADSCrossRefGoogle Scholar
  86. 86.
    Lutchyn, R.M., Sau, J.D., Das Sarma, S.: Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010) ADSCrossRefGoogle Scholar
  87. 87.
    Akhmerov, A.R., Nilsson, J., Beenakker, C.W.J.: Electrically detected interferometry of majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009) ADSCrossRefGoogle Scholar
  88. 88.
    Pablo, S.-J., Prada, E., Aguado, R.: A Josephson effect in finite-length nanowire junctions with Majorana modes. Phys. Rev. Lett. 108, 257001 (2012) ADSCrossRefGoogle Scholar
  89. 89.
    Veldhorst, M., Molenaar, C.G., Wang, X.L., Hilgenkamp, H., Brinkman, A.: Experimental realization of superconducting quantum interference devices with topological insulator junctions. Appl. Phys. Lett. 100, 072602 (2012) ADSCrossRefGoogle Scholar
  90. 90.
    Veldhorst, M., Snelder, M., Hoek, M., Gang, T., Wang, X.L., Guduru, V.K., Zeitler, U., Wiel, W.G., Golubov, A.A., Hilgenkamp, H., Brinkman, A.: Josephson supercurrent through a topological insulator surface state. Nat. Mater. 11, 417 (2012) ADSCrossRefGoogle Scholar
  91. 91.
    Williams, J.R., Bestwick, A.J., Gallagher, P., Hong, S.S., Cui, Y., Bleich, A.S., Analytis, J.G., Fisher, I.R., Goldhaber-Gordon, D.: Unconventional Josephson effect in hybrid superconductor-topological insulator devices. Phys. Rev. Lett. 109, 056803 (2012) ADSCrossRefGoogle Scholar
  92. 92.
    Lucignano, P., Mezzacapo, A., Tafuri, F., Tagliacozzo, A.: Advantages of using YBCO-nanowire-YBCO heterostructures in the search for Majorana fermions. Phys. Rev. B 86, 144513 (2012) ADSCrossRefGoogle Scholar
  93. 93.
    Takei, S., Fregoso, B.M., Galitski, V., Das Sarma, S.: Topological superconductivity and Majorana fermions in hybrid structures involving cuprate high-T c superconductors. Cond. Mat. 1206.3226 (2012)
  94. 94.
    Yamakage, A., Sato, M., Kashiwaya, S., Tanaka, Y.: Anomalous Josephson current in superconducting topological insulator. Cond. Mat. 1208.5306 (2012) Google Scholar
  95. 95.
    Golubov, A.A., Kupryanov, M.Yu., Ilichev, E.: The current-phase relation in Josephson junctions. Rev. Mod. Phys. 76, 411 (2004) ADSCrossRefGoogle Scholar
  96. 96.
    Kulik, I.O., Omelyanchuk, A.N.: Contribution to the microscopic theory of the Josephson effect in superconducting bridges. Pis’ma Zh. Eksp. Teor. Fiz. 21, 216 (2005) [JETP Lett. 21, 96 (2005)] Google Scholar
  97. 97.
    Kulik, I.O., Omelyanchuk, A.N.: Properties of superconducting microbridges in the pure limit. Fiz. Nizk. Temp. 4, 945 (1977) [Sov. J. Low Temp. Phys. 3, 459 (1977)] Google Scholar
  98. 98.
    Ilichev, E., Zakosarenko, V., Ljsselsteijn, R.P.J., Hoenig, H.E., Schultze, V., Meyer, H.G., Grajcar, M., Hlubina, R.: Anomalous periodicity of the current-phase relationship of grain-boundary Josephson junctions in high-T c superconductors. Phys. Rev. B 60, 3096 (1999) ADSCrossRefGoogle Scholar
  99. 99.
    Ilichev, E., Grajcar, M., Hlubina, R., Ljsselsteijn, R.P.J., Hoenig, H.E., Meyer, H.G., Golubov, A., Amin, M.H.S., Zagoskin, A.M., Omelyanchuk, A.N., Kupriyanov, M.Yu.: Degenerate ground state in a mesoscopic YBa2Cu3O7−x grain boundary Josephson junction. Phys. Rev. Lett. 86, 5369 (2001) ADSCrossRefGoogle Scholar
  100. 100.
    Lindström, T., Charlebois, S.A., Tzalenchuk, A.Ya., Ivanov, Z., Amin, M.H.S., Zagoskin, A.M.: Dynamical effects of an unconventional current-phase relation in YBCO dc SQUIDs. Phys. Rev. Lett. 90, 117002 (2003) ADSCrossRefGoogle Scholar
  101. 101.
    Gardiner, C.H., Lee, R.A.M., Gallop, J.C., Tzalenchuk, A.Ya., Macfarlane, J.C., Hao, L.: Degenerate ground state and anomalous flux hysteresis in an YBa2Cu3O7 grain boundary rf SQUID. Supercond. Sci. Technol. 17, S234 (2004) ADSCrossRefGoogle Scholar
  102. 102.
    Terpstra, D., IJsselsteijn, R.P.J., Rogalla, H.: Subharmonic Shapiro steps in high-T c Josephson junctions. Appl. Phys. Lett. 66, 2286 (1995) ADSCrossRefGoogle Scholar
  103. 103.
    Early, E.A., Clark, A.F., Char, K.: Half integral constant voltage steps in high-T c grain boundary junctions. Appl. Phys. Lett. 62, 3357 (1993) ADSCrossRefGoogle Scholar
  104. 104.
    Bulaevskii, L.N., Kuzii, V.V., Sobyanin, A.A.: Superconducting system with weak coupling to the current in the ground state. JETP Lett. 25, 290 (1977) ADSGoogle Scholar
  105. 105.
    Geshkenbein, V.B., Larkin, A.I.: The Josephson effect in superconductors with heavy fermions. JETP Lett. 43(6), 395 (1986) ADSGoogle Scholar
  106. 106.
    Geshkenbein, V.B., Larkin, A.I., Barone, A.: Vortices with half magnetic flux quanta in heavy-fermion superconductors. Phys. Rev. B 36, 235 (1987) ADSCrossRefGoogle Scholar
  107. 107.
    Braunisch, W., Knauf, N., Kateev, V., Neuhausen, S., Grütz, A., Kock, A., Roden, B., Khomskii, D., Wohlleben, D.: Paramagnetic Meissner effect in Bi high temperature superconductors. Phys. Rev. Lett. 68, 1908 (1992) ADSCrossRefGoogle Scholar
  108. 108.
    Andreev, A.V., Buzdin, A.I., Osgood, R.M.: π phase in magnetic-layered superconductors. Phys. Rev. B 43, 10124 (1991) ADSCrossRefGoogle Scholar
  109. 109.
    Goldobin, E., Koelle, D., Kleiner, R.: Semifluxons in long Josephson 0–π-junctions. Phys. Rev. B 66, 100508(R) (2002) ADSCrossRefGoogle Scholar
  110. 110.
    Goldobin, E., Koelle, D., Kleiner, R.: Ground states of one and two fractional vortices in long Josephson 0–k junctions. Phys. Rev. B 70, 174519 (2004) ADSCrossRefGoogle Scholar
  111. 111.
    Schulz, R.R., Chesca, B., Goetz, B., Schneider, C.W., Schmehl, A., Bielefeldt, H., Hilgenkamp, H., Mannhart, J., Tsuei, C.C.: Design and realization of an all d-wave dc π-superconducting quantum interference device. Appl. Phys. Lett. 76, 912 (2000) ADSCrossRefGoogle Scholar
  112. 112.
    Hilgenkamp, H.J.H., Ariando, Smilde, H., Blank, D.H.A., Rijnders, G., Rogalla, H., Kirtley, J.R., Tsuei, C.C.: Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays. Nature 422, 50 (2003) ADSCrossRefGoogle Scholar
  113. 113.
    Kirtley, J.R., Tsuei, C.C., Ariando, Verwijs, C.J.M., Harkema, S., Hilgenkamp, H.: Angle-resolved phase-sensitive determination of the in-plane gap symmetry in YBCO. Nat. Phys. 2, 190 (2006) CrossRefGoogle Scholar
  114. 114.
    Kirtley, J.: Fundamental studies of superconductors using scanning magnetic imaging. Rep. Prog. Phys. 73, 126501 (2010) ADSCrossRefGoogle Scholar
  115. 115.
    Bjornsson, P.G., Maeno, Y., Huber, M.E., Moler, K.: Scanning magnetic imaging of Sr2RuO4. Phys. Rev. B 72, 12504 (2005) ADSCrossRefGoogle Scholar
  116. 116.
    Kirtley, J.R., Kallin, C., Hicks, C.W., Kim, E.A., Liu, Y., Moler, K.A., Maeno, Y.Y., Nelson, K.D.: Upper limit on spontaneous supercurrents in Sr2RuO4. Phys. Rev. B 76, 14526 (2007) ADSCrossRefGoogle Scholar
  117. 117.
    Hicks, C.W., Kirtley, J.R., Lippman, T.M., Koshnick, N.C., Huber, M.E., Maeno, Y., Yuhasz, W.M., Maple, M.B., Moler, K.A.: Limits on superconductivity-related magnetization in Sr2RuO4 and PrOs4Sb12 from scanning SQUID microscopy. Phys. Rev. B 81, 214501 (2010) ADSCrossRefGoogle Scholar
  118. 118.
    Maeno, Y., Hashimoto, H., Yoshida, K., Nishizaki, S., Fujita, T., Bednorz, J.G., Lichtenberg, F.: Superconductivity in a layered perovskite without copper. Nature 372, 532 (1994) ADSCrossRefGoogle Scholar
  119. 119.
    Mackenzie, A.P., Maeno, Y.: The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003) ADSCrossRefGoogle Scholar
  120. 120.
    Fittipaldi, R., Vecchione, A., Ciancio, R., Pace, S., Cuoco, M., Stornaiuolo, D., Born, D., Tafuri, F., Olsson, E., Kittaka, S., Yaguchi, H., Maeno, Y.: Superconductivity in Sr2RuO4-Sr3Ru2O7 eutectic crystals. Europhys. Lett. 83, 27007 (2008) ADSCrossRefGoogle Scholar
  121. 121.
    Tafuri, F., Kirtley, J.R., Medaglia, P.G., Orgiani, P., Balestrino, G.: Penetration depths of artificially layered [Ba0,9Nd0,1CuO2+x]m/[CaCuO2]n systems. Phys. Rev. Lett. 92, 157006 (2004) ADSCrossRefGoogle Scholar
  122. 122.
    Bert, J.A., Kalisky, B., Bell, C., Kim, M., Hikita, Y., Hwang, H.Y., Moler, K.A.: Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys. 7, 767 (2011) CrossRefGoogle Scholar
  123. 123.
    Kalisky, B., Kirtley, J.R., Analytis, J.G., Chu, J.-H., Vailionis, A., Fisher, I.R., Moler, K.A.: Stripes of increased diamagnetic susceptibility in underdoped superconducting Ba(Fe1−xCox)2As2 single crystals: evidence for an enhanced superfluid density at twin boundaries. Phys. Rev. B 81, 184513 (2010) ADSCrossRefGoogle Scholar
  124. 124.
    Smilde, H.J.H., Golubov, A.A., Ariando, Rijnders, G., Dekkers, J.M., Harkema, S., Blank, D.H.A., Rogalla, H., Hilgenkamp, H.: Admixtures to d-wave gap symmetry in untwinned YBaCuO superconducting films measured by angle-resolved electron tunneling. Phys. Rev. Lett. 95, 257001 (2005) ADSCrossRefGoogle Scholar
  125. 125.
    Dekkers, J.M., Rijnders, G., Harkema, S., Smilde, H.J.H., Hilgenkamp, H., Rogalla, H., Blank, D.H.A.: Monocrystalline YBaCuO thin films on vicinal SrTiO (001) substrates. Appl. Phys. Lett. 83, 5199 (2003) ADSCrossRefGoogle Scholar
  126. 126.
    Gustafsson, D., Golubev, D., Fogelstrom, M., Claeson, T., Bauch, T., Lombardi, F.: Fully gapped superconductivity in a nanometer size YBaCuO island enhanced by magnetic field. Unpublished (2012) Google Scholar
  127. 127.
    Copetti, C.A., Ruders, F., Oelze, B., Buchal, Ch., Kabius, B., Seo, J.W.: Electrical properties of 45° grain boundaries of epitaxial YBaCuO, dominated by crystalline microstructure and d-wave-symmetry. Physica C 253, 63 (1995) ADSCrossRefGoogle Scholar
  128. 128.
    Mannhart, J., Hilgenkamp, H., Mayer, B., Gerber, Ch., Kirtley, J.R., Moler, K.A., Sigrist, M.: Generation of magnetic flux by single grain boundaries of YBaCuO. Phys. Rev. Lett. 77, 2782 (1996) ADSCrossRefGoogle Scholar
  129. 129.
    Hilgenkamp, H., Mannhart, J., Mayer, B.: Implications of \(d_{x^{2}-y^{2}}\) symmetry and faceting for the transport properties of grain boundaries in high-T c superconductors. Phys. Rev. B 53, 14586 (1996) ADSCrossRefGoogle Scholar
  130. 130.
    Kirtley, J.R., Chaudhari, P., Ketchen, M.B., Khare, N., Lin, S.-Y., Shaw, T.: Distribution of magnetic flux in high-T c grain-boundary junctions enclosing hexagonal and triangular areas. Phys. Rev. B 51, R12057 (1995) ADSCrossRefGoogle Scholar
  131. 131.
    Tafuri, F., Kirtley, J.R., Lombardi, F., Miletto Granozio, F.: Intrinsic and extrinsic d-wave effects in YBaCuO grain boundary Josephson junctions: implications for π-circuitry. Phys. Rev. B 67, 174516 (2003) ADSCrossRefGoogle Scholar
  132. 132.
    Mints, R.G., Papiashvili, I., Kirtley, J.R., Hilgenkamp, H., Hammerl, G., Mannhart, J.: Observation of splintered josephson vortices at grain boundaries in YBaCuO. Phys. Rev. Lett. 89, 067004 (2002) ADSCrossRefGoogle Scholar
  133. 133.
    Mints, R.G., Papiashvili, I.: Josephson vortices with fractional flux quanta at YBa2Cu3O7−x grain boundaries. Phys. Rev. B 64, 134501 (2001) ADSCrossRefGoogle Scholar
  134. 134.
    Amin, M.H.S., Omelyanchouk, A.N., Zagoskin, A.M.: Mechanisms of spontaneous current generation in an inhomogeneous d-wave superconductor. Phys. Rev. B 63, 212502 (2001) ADSCrossRefGoogle Scholar
  135. 135.
    Amin, M.H.S., Rashkeev, S.N., Coury, M., Omelyanchouk, A.N., Zagoskin, A.M.: d+is versus d+id time reversal symmetry breaking states in finite size systems. Phys. Rev. B 66, 174515 (2002) ADSCrossRefGoogle Scholar
  136. 136.
    Sigrist, M., Bailey, D.B., Laughlin, R.B.: Fractional vortices as evidence of time-reversal symmetry breaking in high-temperature superconductors. Phys. Rev. Lett. 74, 3249 (1995) ADSCrossRefGoogle Scholar
  137. 137.
    Bailey, D.B., Sigrist, M., Laughlin, R.B.: Fractional vortices on grain boundaries: the case for broken time-reversal symmetry in high-temperature superconductors. Phys. Rev. B 55, 15239 (1997) ADSCrossRefGoogle Scholar
  138. 138.
    Lofwander, T., Shumeiko, V.S., Wendin, G.: Time-reversal symmetry breaking at Josephson tunnel junctions of purely d-wave superconductors. Phys. Rev. B 62, R14653 (2000) ADSCrossRefGoogle Scholar
  139. 139.
    Carmi, R., Polturak, E., Koren, G., Auerbach, A.: Spontaneous macroscopic magnetization at the superconducting transition temperature of YBaCuO7. Nature 404, 853 (2000) ADSCrossRefGoogle Scholar
  140. 140.
    Tafuri, F., Kirtley, J.R.: Spontaneous magnetic moments in YBaCuO thin films. Phys. Rev. B 62, 13934 (2000) ADSCrossRefGoogle Scholar
  141. 141.
    Kosterlitz, J.M., Thouless, D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181 (1973) ADSCrossRefGoogle Scholar
  142. 142.
    Kirtley, J.R., Tsuei, C.C., Tafuri, F.: Thermally activated spontaneous fluxoid formation in superconducting thin film rings. Phys. Rev. Lett. 90, 257001 (2003) ADSCrossRefGoogle Scholar
  143. 143.
    Zasadzinski, J.: In: Bennemann, K.H., Ketterson, J.B. (eds.) The Physics of Superconductors, vol. I, p. 591. Springer, Berlin (2003) CrossRefGoogle Scholar
  144. 144.
    Covington, M., Aprili, M., Paraoanu, E., Greene, L.H., Xu, F., Zhu, J., Mirkin, C.A.: Observation of surface-induced broken time-reversal symmetry in YBaCuO tunnel junctions. Phys. Rev. Lett. 79, 277 (1997) ADSCrossRefGoogle Scholar
  145. 145.
    Fogelstrom, M., Rainer, D., Sauls, J.A.: Tunneling into current-carrying surface states of high-T c superconductors. Phys. Rev. Lett. 79, 281 (1997) ADSCrossRefGoogle Scholar
  146. 146.
    Aprili, M., Covington, M., Paraoanu, E., Niedermeier, B., Greene, L.H.: Tunneling spectroscopy of the quasiparticle Andreev bound state in ion-irradiated YBaCuO/Pb junctions. Phys. Rev. B 57, R8139 (1998) ADSCrossRefGoogle Scholar
  147. 147.
    Tomaschko, J., Scharinger, S., Leca, V., Nagel, J., Kemmler, M., Selistrovski, T., Koelle, D., Kleiner, R.: Phase-sensitive evidence for \({d}_{x^{2}- y^{2}}\)-pairing symmetry in the parent-structure high-T c cuprate superconductor Sr1−xLaxCuO2. Phys. Rev. B 86, 094509 (2012) ADSCrossRefGoogle Scholar
  148. 148.
    Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (Utrecht) 7, 284 (1940) MathSciNetADSzbMATHCrossRefGoogle Scholar
  149. 149.
    Ivanchenko, Yu.M., Zilberman, L.A.: The Josephson effect on small size tunnel contacts. Zh. Èksp. Teor. Fiz. 55, 2396 (1968) [Sov. Phys. JETP 28, 1272 (1969)] Google Scholar
  150. 150.
    Voss, R.F., Webb, R.A.: Macroscopic quantum tunneling in 1-μm Nb Josephson junctions. Phys. Rev. Lett. 47, 265 (1981) ADSCrossRefGoogle Scholar
  151. 151.
    Jackel, L.D., Gordon, J.P., Hu, E.L., Howard, R.E., Fetter, L.A., Tennant, D.M., Epworth, R.W., Kurkijarvi, J.: Decay of the zero-voltage state in small-area, high-current-density Josephson junctions. Phys. Rev. Lett. 47, 697 (1981) ADSCrossRefGoogle Scholar
  152. 152.
    der Boer, W., de Bruyn Ouboter, R.: Flux transition mechanisms in superconducting loops closed with a low capacitance point contact. Physica B 98, 185 (1980) CrossRefGoogle Scholar
  153. 153.
    Bol, D.W., Scheffer, J.J.F., Giele, W., de Bruyn Ouboter, R.: Thermal activation in the quantum regime and macroscopic quantum tunnelling in the thermal regime in a metabistable system consisting of a superconducting ring interrupted by a weak junction, part I: thermal activation in the quantum regime. Physica B 113, 196 (1985) Google Scholar
  154. 154.
    Prance, R.J., Long, A.P., Clarke, T.D., Widom, A., Mutton, J.E., Sacco, J., Potts, M.W., Negaloudis, G., Goodall, F.: Macroscopic quantum electrodynamic effects in a superconducting ring containing a Josephson weak link. Nature 289, 543 (1981) ADSCrossRefGoogle Scholar
  155. 155.
    Dimitrenko, I.M., Khlus, V.A., Tsoi, G.M., Shnyrkov, V.I.: Quantum decay of metastable current states in rf SQUIDs. Fiz. Nizk. Temp. 11, 146 (1985) [Sov. J. Low Temp. Phys. 11, 77 (1985)] Google Scholar
  156. 156.
    Washburn, S., Webb, R.A., Voss, R.F., Farris, S.M.: Effects of dissipation and temperature on macroscopic quantum tunneling. Phys. Rev. Lett. 54, 2712 (1985) ADSCrossRefGoogle Scholar
  157. 157.
    Schartz, D.B., Sen, B., Archie, C.N., Lukens, J.E.: Quantitative study of the effect of the environment on macroscopic quantum tunneling. Phys. Rev. Lett. 55, 1547 (1985) ADSCrossRefGoogle Scholar
  158. 158.
    Devoret, M.H., Martinis, J.M., Clarke, J.: Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett. 55, 1908 (1985) ADSCrossRefGoogle Scholar
  159. 159.
    Martinis, J.M., Devoret, M.H., Clarke, J.: Experimental tests for the quantum behavior of a macroscopic degree of freedom: the phase difference across a Josephson junction. Phys. Rev. B 35, 4682 (1987) ADSCrossRefGoogle Scholar
  160. 160.
    Martinis, J.M., Devoret, M.H., Clarke, J.: Energy-level quantization in the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett. 55, 1543 (1985) ADSCrossRefGoogle Scholar
  161. 161.
    Fulton, T.A., Dunkleberger, L.N.: Lifetime of the zero-voltage state in Josephson tunnel junctions. Phys. Rev. B 9, 4760 (1974) ADSCrossRefGoogle Scholar
  162. 162.
    Kautz, R.L., Martinis, J.M.: Noise-affected I-V curves in small hysteretic Josephson junctions. Phys. Rev. B 42, 9903 (1990) ADSCrossRefGoogle Scholar
  163. 163.
    Martinis, J.M., Kautz, R.L.: Classical phase diffusion in small hysteretic Josephson junctions. Phys. Rev. Lett. 63, 1507 (1989) ADSCrossRefGoogle Scholar
  164. 164.
    Kivioja, J.M., Nieminen, T.E., Claudon, J., Buisson, O., Hekking, F.W.J., Pekola, J.P.: Observation of transition from escape dynamics to underdamped phase diffusion in a Josephson junction. Phys. Rev. Lett. 94, 247002 (2005) ADSCrossRefGoogle Scholar
  165. 165.
    Männik, J., Li, S., Qiu, W., Chen, W., Patel, V., Han, S., Lukens, J.E.: Crossover from Kramers to phase-diffusion switching in moderately damped Josephson junctions. Phys. Rev. B 71, 220509 (2005) CrossRefGoogle Scholar
  166. 166.
    Fenton, J.C., Warburton, P.A.: Monte Carlo simulations of thermal fluctuations in moderately damped Josephson junctions: multiple escape and retrapping, switching- and return-current distributions, and hysteresis. Phys. Rev. B 78, 054526 (2008) ADSCrossRefGoogle Scholar
  167. 167.
    Longobardi, L., Massarotti, D., Rotoli, G., Stornaiuolo, D., Papari, G., Kawakami, A., Pepe, G.P., Barone, A., Tafuri, F.: Quantum crossover in moderately damped epitaxial NbN/MgO/NbN junctions with low critical current density. Appl. Phys. Lett. 99, 062510 (2011) CrossRefGoogle Scholar
  168. 168.
    Longobardi, L., Massarotti, D., Rotoli, G., Stornaiuolo, D., Papari, G., Kawakami, A., Pepe, G.P., Barone, A., Tafuri, F.: Thermal hopping and retrapping of a Brownian particle in the tilted periodic potential of a NbN/MgO/NbN Josephson junction. Phys. Rev. B 84, 184504 (2011) ADSCrossRefGoogle Scholar
  169. 169.
    Fominov, Y.V., Golubov, A.A., Kupriyanov, M.Y.: Decoherence due to nodal quasiparticles in d-wave qubits. JETP Lett. 77, 587 (2003) ADSCrossRefGoogle Scholar
  170. 170.
    Amin, M.H.S., Smirnov, A.Y.: Quasiparticle decoherence in d-wave superconducting qubits. Phys. Rev. Lett. 92, 017001 (2004) ADSCrossRefGoogle Scholar
  171. 171.
    Kawabata, S., Kashiwaya, S., Asano, Y., Tanaka, Y.: Macroscopic quantum tunneling and quasiparticle dissipation in d-wave superconductor Josephson junctions. Phys. Rev. B 70, 132505 (2004) ADSCrossRefGoogle Scholar
  172. 172.
    Kawabata, S., Kashiwaya, S., Asano, Y., Tanaka, Y.: Effect of zero-energy bound states on macroscopic quantum tunneling in high-T c superconductor junctions. Phys. Rev. B 72, 052506 (2005) ADSCrossRefGoogle Scholar
  173. 173.
    Yokoyama, T., Kawabata, S., Kato, T., Tanaka, Y.: Theory of macroscopic quantum tunneling in high-T c c-axis Josephson junctions. Phys. Rev. B 76, 134501 (2007) ADSCrossRefGoogle Scholar
  174. 174.
    Rotoli, G., Bauch, T., Lindstrom, T., Stornaiuolo, D., Tafuri, F., Lombardi, F.: Classical resonant activation of a Josephson junction embedded in an LC circuit. Phys. Rev. B 75, 144501 (2007) ADSCrossRefGoogle Scholar
  175. 175.
    Kawabata, S., Bauch, T., Kato, T.: Theory of two-dimensional macroscopic quantum tunneling in YBa2Cu3O7−x Josephson junctions coupled to an LC circuit. Phys. Rev. B 80, 174513 (2009) ADSCrossRefGoogle Scholar
  176. 176.
    Claeson, T., Lombardi, F., Bauch, T., Lindström, T., Barone, P.D.A., Tafuri, F., Rotoli, G.: Macroscopic quantum phenomena in high critical temperature superconducting Josephson junctions. J. Supercond. Nov. Magn. 19, 341 (2006) CrossRefGoogle Scholar
  177. 177.
    Yu, H.F., Zhu, X.B., Peng, Z.H., Tian, Ye, Cui, D.J., Chen, G.H., Zheng, D.N., Jing, X.N., Lu, L., Zhao, S.P., Han, S.: Quantum phase diffusion in a small underdamped Josephson junction. Phys. Rev. Lett. 107, 067004 (2011) ADSCrossRefGoogle Scholar
  178. 178.
    Yoon, Y., Gasparinetti, S., Mottonen, M., Pekola, J.P.: Capacitively enhanced thermal escape in underdamped Josephson junctions. J. Low Temp. Phys. 163, 164 (2011) ADSCrossRefGoogle Scholar
  179. 179.
    Massarotti, D., Longobardi, L., Galletti, L., Stornaiuolo, D., Montemurro, D., Pepe, G., Rotoli, G., Barone, A., Tafuri, F.: Escape dynamics in moderately damped Josephson junctions. J. Low Temp. Phys. 38, 263 (2012) Google Scholar
  180. 180.
    Iansiti, M., Johnson, A., Smith, W.F., Rogalla, H., Lobb, C.J., Tinkham, M.: Charging energy and phase delocalization in single very small Josephson tunnel junctions. Phys. Rev. Lett. 59, 489 (1987) ADSCrossRefGoogle Scholar
  181. 181.
    Iansiti, M., Tinkham, M., Johnson, A.T., Smith, W.F., Lobb, C.J.: Charging effects and quantum properties of small superconducting tunnel junctions. Phys. Rev. B 39, 6465 (1989) ADSCrossRefGoogle Scholar
  182. 182.
    Inomata, K., Sato, S., Nakajima, K., Tanaka, A., Takano, Y., Wang, H.B., Nagao, M., Hatano, H., Kawabata, S.: Macroscopic quantum tunneling in a d-wave high-T c BiSrCaCuO superconductor. Phys. Rev. Lett. 95, 107005 (2005) ADSCrossRefGoogle Scholar
  183. 183.
    Jin, X.Y., Lisenfeld, J., Koval, Y., Lukashenko, A., Ustinov, A.V., Mueller, P.: Enhanced macroscopic quantum tunneling in BiSrCaCuO intrinsic Josephson-junction stacks. Phys. Rev. Lett. 96, 177003 (2006) ADSCrossRefGoogle Scholar
  184. 184.
    Tzalenchuk, A.Ya., Lindstrom, T., Charlebois, S.A., Stepantsov, E.A., Ivanov, Z., Zagoskin, A.M.: Mesoscopic Josephson junctions of high-T c superconductors. Phys. Rev. B 68, 100501 (2003) ADSCrossRefGoogle Scholar
  185. 185.
    Testa, G., Monaco, A., Esposito, E., Sarnelli, E., Kang, D.J., Mennema, S.H., Tarte, E.J., Blamire, M.G.: Midgap state-based π-junctions for digital applications. Appl. Phys. Lett. 85, 1202 (2004) ADSCrossRefGoogle Scholar
  186. 186.
    Testa, G., Sarnelli, E., Monaco, A., Esposito, E., Ejrnaes, M., Kang, D.J., Mennema, S.H., Tarte, E.J., Blamire, M.G.: Evidence of midgap-state-mediated transport in 45° symmetric[001]tiltYBa2Cu3O7−x bicrystal grain-boundary junctions. Phys. Rev. B 71, 134520 (2005) ADSCrossRefGoogle Scholar
  187. 187.
    Stornaiuolo, D., Gambale, E., Bauch, T., Born, D., Cedergren, K., Dalena, D., Barone, A., Tagliacozzo, A., Lombardi, F., Tafuri, F.: Underlying physical aspects of fluctuations in YBaCuO grain boundary Josephson junctions. Physica C 468, 310 (2008) ADSCrossRefGoogle Scholar
  188. 188.
    Tagliacozzo, A., Born, D., Stornaiuolo, D., Gambale, E., Dalena, D., Lombardi, F., Barone, A., Altshuler, B.L., Tafuri, F.: Observation of mesoscopic conductance fluctuations in YBaCuO grain boundary Josephson junctions. Phys. Rev. B 75, 012507 (2007) ADSCrossRefGoogle Scholar
  189. 189.
    Tagliacozzo, A., Tafuri, F., Gambale, E., Jouault, B., Born, D., Lucignano, P., Stornaiuolo, D., Lombardi, F., Barone, A., Altshuler, B.L.: Mesoscopic conductance fluctuations in YBCO grain boundary junction at low temperature. Phys. Rev. B 79, 024501 (2009) ADSCrossRefGoogle Scholar
  190. 190.
    Lucignano, P., Stornaiuolo, D., Tafuri, F., Altshuler, B.L., Tagliacozzo, A.: Evidence of minigap in YBCO grain boundary Josephson junctions. Phys. Rev. Lett. 105, 147001 (2010) ADSCrossRefGoogle Scholar
  191. 191.
    Lee, P.A., Ramakrishnan, T.V.: Disordered electronic systems. Rev. Mod. Phys. 57, 287 (1985) ADSCrossRefGoogle Scholar
  192. 192.
    Lee, P.A., Stone, A.D.: Universal conductance fluctuations in metals. Phys. Rev. Lett. 55, 1622 (1985) ADSCrossRefGoogle Scholar
  193. 193.
    Lee, P.A., Stone, A.D., Fukuyama, H.: Universal conductance fluctuations in metals: effects of finite temperature, interactions, and magnetic field. Phys. Rev. B 35, 1039 (1987) ADSCrossRefGoogle Scholar
  194. 194.
    Altshuler, B.L., Lee, P.: Disordered electronic systems. Phys. Today 41(12), 36 (1988) ADSCrossRefGoogle Scholar
  195. 195.
    Webb, R.A., Washburn, S.: Quantum interference fluctuations in disordered metals. Phys. Today 41(12), 46 (1988) ADSCrossRefGoogle Scholar
  196. 196.
    Imry, Y.: Introduction to Mesoscopic Physics. Oxford University Press, Oxford (1997) Google Scholar
  197. 197.
    Gedik, N., Orenstein, J., Liang, R., Bonn, D.A., Hardy, W.N.: Diffusion of nonequilibrium quasi-particles in a cuprate superconductor. Science 300, 1410 (2003) ADSCrossRefGoogle Scholar
  198. 198.
    Wang, J., Shi, C., Tian, M., Zhang, Q., Kumar, N., Jain, J.K., Mallouk, T.E., Chan, M.H.W.: Proximity-induced superconductivity in nanowires: minigap state and differential magnetoresistance oscillations. Phys. Rev. Lett. 102, 247003 (2009) ADSCrossRefGoogle Scholar
  199. 199.
    Gross, R., Alff, L., Beck, A., Froehlich, O.M., Koelle, D., Marx, A.: Physics and technology of high temperature superconducting Josephson junctions. IEEE Trans. Appl. Supercond. 7, 2929 (1997) CrossRefGoogle Scholar
  200. 200.
    Gross, R., Mayer, B.: Transport processes and noise in YBaCuO grain boundary junctions. Physica C 180, 235 (1991) ADSCrossRefGoogle Scholar
  201. 201.
    Moeckly, B.H., Lathrop, D.K., Buhrman, R.A.: Electromigration study of oxygen disorder and grain-boundary effects in YBaCuO thin films. Phys. Rev. B 47, 400 (1993) ADSCrossRefGoogle Scholar
  202. 202.
    Sarnelli, E., Testa, G., Esposito, E.: A two channel model as a possible microscopic configuration of the “barrier” in high T c grain boundary junctions. J. Supercond. 7, 387 (1994) ADSCrossRefGoogle Scholar
  203. 203.
    Kalisky, B., Kirtley, J.R., Nowadnick, E.A., Dinner, R.B., Zeldov, E., Ariando, Wenderich, S., Hilgenkamp, H., Feldmann, D.M., Moler, K.A.: Dynamics of single vortices in grain boundaries: IV characteristics on the fermo-volt scale. Appl. Phys. Lett. 94, 202504 (2009) ADSCrossRefGoogle Scholar
  204. 204.
    Gustafsson, D., Pettersson, H., Iandolo, B., Olsson, E., Bauch, T., Lombardi, F.: Soft nanostructuring of YBCO Josephson junctions by phase separation. Nano Lett. 10, 4824 (2010) ADSCrossRefGoogle Scholar
  205. 205.
    Nagel, J., Konovalenko, K.B., Kemmler, M., Turad, M., Werner, R., Kleisz, E., Menzel, S., Klingeler, R., Buchner, B., Kleiner, R., Koelle, D.: Resistively shunted YBCO grain boundary junctions and low-noise SQUIDs patterned by a focused ion beam down to 80 nm linewidth. Supercond. Sci. Technol. 24, 015015 (2011) ADSCrossRefGoogle Scholar
  206. 206.
    Foley, C.P., Hilgenkamp, H.: Why nanoSQUIDs are important: an introduction to the focus issue. Supercond. Sci. Technol. 22, 064001 (2009) ADSCrossRefGoogle Scholar
  207. 207.
    Zaanen, J., Gunnarsson, O.: Charged magnetic domain lines and the magnetism of high-T c oxides. Phys. Rev. B 40, 7391 (1989) ADSCrossRefGoogle Scholar
  208. 208.
    Tranquada, J.M., Buttrey, D.J., Sachan, V., Lorenzo, J.E.: Simultaneous ordering of holes and spins in La2NiO4.125. Phys. Rev. Lett. 73, 1003 (1994) ADSCrossRefGoogle Scholar
  209. 209.
    Kivelson, S.A., Bindloss, I.P., Fradkin, E., Oganesyan, V., Tranquada, J.M., Kapitulnik, A., Howald, C.: How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201 (2003) ADSCrossRefGoogle Scholar
  210. 210.
    Graser, S., Hirschfeld, P.J., Kopp, T., Gutser, R., Andersen, B.M., Mannhart, J.: How grain boundaries limit supercurrents in high-temperature superconductors. Nat. Phys. 6, 609 (2010) CrossRefGoogle Scholar
  211. 211.
    Papari, G., Carillo, F., Stornaiuolo, D., Longobardi, L., Beltram, F., Tafuri, F.: High critical-current density and scaling of phase-slip processes in YBaCuO nanowires. Supercond. Sci. Technol. 25, 035011 (2012) ADSCrossRefGoogle Scholar
  212. 212.
    Papari, G., Carillo, F., Born, D., Bartoloni, L., Gambale, E., Stornaiuolo, D., Pingue, P., Beltram, F., Tafuri, F.: YBCO nanobridges: simplified fabrication process by using a Ti hard mask. IEEE Trans. Appl. Supercond. 19, 183 (2009) ADSCrossRefGoogle Scholar
  213. 213.
    Xu, K., Heath, J.R.: Long, highly-ordered high-temperature superconductor nanowire arrays. Nano Lett. 8, 3845 (2008) ADSCrossRefGoogle Scholar
  214. 214.
    Larsson, P., Nilsson, B., Ivanov, Z.G.: Fabrication and transport measurements of YBaCuO nanostructures. J. Vac. Sci. Technol. 18, 25 (2000) CrossRefGoogle Scholar
  215. 215.
    Schneider, J., Kohlstedt, H., Wordenweber, R.: Nanobridges of optimized YBa2Cu3O7 thin films for superconducting flux-flow type devices. Appl. Phys. Lett. 63, 2426 (1993) ADSCrossRefGoogle Scholar
  216. 216.
    Assink, H.P., v.d. Harg, A.J.M., Schep, C.M., Chen, N.Y., v.d. Marel, D., Hadley, P., v.d. Drift, E.W.J.M., Mooij, J.E.: Critical currents in submicron YBa2Cu3O7 lines. IEEE Trans. Appl. Supercond. 3, 2983 (1993) CrossRefGoogle Scholar
  217. 217.
    Mohanty, P., Wei, J.Y.T., Ananth, V., Morales, P., Skocpol, W.: Nanoscale high-temperature superconductivity. Physica C 666, 408 (2004) Google Scholar
  218. 218.
    Bonetti, J.A., Caplan, D.S., Van Harlingen, D.J., Weissman, B.: Electronic transport in underdoped YBa2Cu3O7−δ nanowires: evidence for fluctuating domain structures. Phys. Rev. Lett. 93, 87002 (2004) ADSCrossRefGoogle Scholar
  219. 219.
    Herbstritt, F., Kemen, T., Marx, A., Gross, R.: Ultraviolet light assisted oxygenation process for submicron YBa2Cu3O7−δ thin film devices. J. Appl. Phys. 91, 5411 (2002) ADSCrossRefGoogle Scholar
  220. 220.
    Carillo, F., Papari, G., Stornaiuolo, D., Born, D., Montemurro, D., Pingue, P., Beltram, F., Tafuri, F.: Little–Parks effect in single nanoscale YBaCuO rings. Phys. Rev. B 81, 054505 (2010) ADSCrossRefGoogle Scholar
  221. 221.
    Sochnikov, I., Shaulov, A., Yeshurun, Y., Logvenov, G., Bozovic, I.: Large oscillations of the magnetoresistance in nanopatterned high-temperature superconducting films. Nat. Nanotechnol. 5, 516 (2010) ADSCrossRefGoogle Scholar
  222. 222.
    Sochnikov, I., Bozovic, I., Shaulov, A., Yeshurun, Y.: Uncorrelated behavior of fluxoids in superconducting double networks. Phys. Rev. B 84, 094530 (2011) ADSCrossRefGoogle Scholar
  223. 223.
    Loder, F., Kampf, A.P., Kopp, T., Mannhart, J., Schneider, C.W., Barash, Y.S.: Magnetic flux periodicity of h/e in superconducting loops. Nat. Phys. 4, 112 (2008) CrossRefGoogle Scholar
  224. 224.
    Loder, F., Kampf, A.P., Kopp, T.: Crossover from hc/e to hc/2e current oscillations in rings of s-wave superconductors. Phys. Rev. B 78, 174526 (2008) ADSCrossRefGoogle Scholar
  225. 225.
    Barash, Y.S.: Low-energy subgap states and the magnetic flux periodicity in d-wave superconducting rings. Phys. Rev. Lett. 100, 177003 (2008) ADSCrossRefGoogle Scholar
  226. 226.
    Vakaryuk, V.: Universal mechanism for breaking the hc/2e periodicity of flux-induced oscillations in small superconducting rings. Phys. Rev. Lett. 101, 167002 (2008) ADSCrossRefGoogle Scholar
  227. 227.
    Juricic, V., Herbut, I.F., Tesanovic, Z.: Restoration of the magnetic hc/e-periodicity in unconventional superconductors. Phys. Rev. Lett. 100, 187006 (2008) ADSCrossRefGoogle Scholar
  228. 228.
    Loder, F., Kampf, A.P., Kopp, T., Mannhart, J.: Flux periodicities in loops of nodal superconductors. New J. Phys. 11, 075005 (2009) ADSCrossRefGoogle Scholar
  229. 229.
    Berdiyorov, G.R., Milosevic, M.V., Latimer, M.L., Xiao, Z.L., Kwok, W.K., Peeters, F.M.: Large magnetoresistance oscillations in mesoscopic superconductors due to current-excited moving vortices. Phys. Rev. Lett. 109, 057004 (2012) ADSCrossRefGoogle Scholar
  230. 230.
    Fomin, V.M., Rezaev, R.O., Schmid, O.G.: Tunable generation of correlated vortices in open superconductor tubes. Nano Lett. 12, 1282 (2012) ADSCrossRefGoogle Scholar
  231. 231.
    Ribeiro Gomes, R., de Oliveira, I.G., Doria, M.M.: Little–Parks oscillations near a persistent current loop. Phys. Rev. B 85, 144512 (2012) ADSCrossRefGoogle Scholar
  232. 232.
    Liu, F.Y., Haviland, D.B., Glazman, L.I., Goldman, A.M.: Resistive transitions in ultrathin superconducting films: possible evidence for quantum tunneling of vortices. Phys. Rev. Lett. 68, 2224 (1992) ADSCrossRefGoogle Scholar
  233. 233.
    Yazdani, A., Kapitulnik, A., Beasley, M.R.: Observation of quantum dissipation in the vortex state of a highly disordered superconducting thin film. Phys. Rev. Lett. 76, 1529 (1995) Google Scholar
  234. 234.
    Tafuri, Kirtley, J.R., Born, D., Stornaiuolo, D., Medaglia, P.G., Orgiani, P., Balestrino, G., Kogan, V.G.: Dissipation in ultra-thin current-carrying superconducting bridges evidence for quantum tunneling of pearl vortices. Europhys. Lett. 73, 948 (2006) ADSCrossRefGoogle Scholar
  235. 235.
    Glazman, L.I., Fogel, N.Ya.: Possibility of quantum tunneling of vortices in thin superconducting films. Sov. J. Low Temp. Phys. 10, 51 (1984) [Fiz. Nizk. Temp. 10, 94 (1984)] Google Scholar
  236. 236.
    Montemurro, D., Roddaro, S., Massarotti, D., Sorba, L., Beltram, F., Tafuri, F.: MIUR Prin-project “Nanowire high critical temperature superconductor field-effect devices (2011–2013)”. Unpublished (2012) Google Scholar
  237. 237.
    Ahn, C.H., Bhattacharya, A., Di Ventra, M., Eckstein, J.N., Frisbie, C.D., Gershenson, M.E., Goldman, A.M., Inoue, I.H., Mannhart, J., Millis, A.J., Morpurgo, A.F., Natelson, D., Triscone, J.-M.: Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185 (2006) ADSCrossRefGoogle Scholar
  238. 238.
    Salluzzo, M., Ghiringhelli, G., Cezar, J.C., Brookes, N.B., De Luca, G.M., Fracassi, F., Vaglio, R.: Indirect electric field doping of the CuO2 planes of the cuprate NdBa2Cu3O7 superconductor. Phys. Rev. Lett. 100, 056810 (2008) ADSCrossRefGoogle Scholar
  239. 239.
    Mannhart, J.: High-T c transistors. Supercond. Sci. Technol. 9, 49 (1996) ADSCrossRefGoogle Scholar
  240. 240.
    Mourik, V., Zuo, K., Frolov, S., Plissard, S., Bakkers, E., Kouwenhoven, L.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 (2012) ADSCrossRefGoogle Scholar
  241. 241.
    Ovchinnikov, Y.N., Kresin, V.Z.: Theoretical investigation of Josephson tunneling between nanoclusters. Phys. Rev. B 61, 2145050 (2010) Google Scholar
  242. 242.
    Kresin, V.Z., Wolf, S.A.: Electron-lattice interaction and its impact on high-T C superconductivity. Rev. Mod. Phys. 81, 481 (2009) ADSCrossRefGoogle Scholar
  243. 243.
    Lee, G.-H., Jeong, D., Choi, J.-H., Doh, Y.-J., Lee, H.-J.: Electrically tunable macroscopic quantum tunneling in a graphene-based Josephson junction. Phys. Rev. Lett. 107, 146605 (2011) ADSCrossRefGoogle Scholar
  244. 244.
    Jeong, D., Choi, J.-H., Lee, G.-H., Jo, S., Doh, Y.-J., Lee, H.-J.: Observation of supercurrent in PbIn–graphene–PbIn Josephson junction. Phys. Rev. B 83, 094503 (2011) ADSCrossRefGoogle Scholar
  245. 245.
    Ojeda-Aristizabal, C., Ferrier, M., Gueron, S., Bouchiat, H.: Tuning the proximity effect in a superconductor–graphene–superconductor junction. Phys. Rev. B 79, 165436 (2009) ADSCrossRefGoogle Scholar
  246. 246.
    Borzenets, I.V., Coskun, U.C., Jones, S.J., Finkelstein, G.: Phase diffusion in graphene-based Josephson junctions. Phys. Rev. Lett. 107, 137005 (2011) ADSCrossRefGoogle Scholar
  247. 247.
    Doh, Y.J., van Dam, J.A., Roest, A.L., Bakkers, E.P.A.M., Kouwenhoven, L.P., De Franceschi, S.: Tunable supercurrent through semiconductor nanowires. Science 309, 272 (2005) ADSCrossRefGoogle Scholar
  248. 248.
    Xiang, J., Vidan, A., Tinkham, M., Westervelt, R.M., Lieber, C.M.: Ge/Si nanowire mesoscopic Josephson junctions. Nat. Nanotechnol. 1, 208 (2006) ADSCrossRefGoogle Scholar
  249. 249.
    Jarillo-Herrero, P., van Dam, J.A., Kouwenhoven, L.P.: Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953 (2006) ADSCrossRefGoogle Scholar
  250. 250.
    Cleuziou, W., Wernsdorfer, J.P., Bouchiat, V., Ondarcuhu, T., Monthioux, M.: Carbon nanotube superconducting quantum interference device. Nat. Nanotechnol. 1, 53 (2006) ADSCrossRefGoogle Scholar
  251. 251.
    Katsaros, G., Spathis, P., Stoffel, M., Fournel, F., Mongillo, M., Bouchiat, V., Lefloch, F., Rastelli, A., Schmidt, O.G., De Franceschi, S.: Hybrid superconductor, a semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nat. Nanotechnol. 5, 458 (2010) ADSCrossRefGoogle Scholar
  252. 252.
    Courtois, H., Meschke, M., Peltonen, J.T., Pekola, J.P.: Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 101, 067002 (2008) ADSCrossRefGoogle Scholar
  253. 253.
    Angers, L., Chiodi, F., Montambaux, G., Ferrier, M., Gureron, S., Bouchiat, H., Cuevas, J.C.: Proximity dc squids in the long-junction limit. Phys. Rev. B 77, 165408 (2008) ADSCrossRefGoogle Scholar
  254. 254.
    Sahu, M., Bae, M.H., Rogachev, A., Pekker, D., Wei, T.C., Shah, N., Goldbart, P.M., Bezryadin, A.: Individual topological tunnelling events of a quantum field probed through their macroscopic consequences. Nat. Phys. 5, 503 (2009) CrossRefGoogle Scholar
  255. 255.
    Li, P., Wu, P.M., Bomze, Y., Borzenets, I.V., Finkelstein, G., Chang, A.M.: Switching currents limited by single phase slips in one-dimensional superconducting al nanowires. Phys. Rev. Lett. 107, 137004 (2011) ADSCrossRefGoogle Scholar
  256. 256.
    Li, P., Wu, P.M., Bomze, Y., Borzenets, I.V., Finkelstein, G., Chang, A.M.: Retrapping current, self-heating, and hysteretic current–voltage characteristics in ultranarrow superconducting aluminum nanowires. Phys. Rev. B 84, 184508 (2011) ADSCrossRefGoogle Scholar
  257. 257.
    Tinkham, M., Free, J.U., Lau, C.N., Markovic, N.: Hysteretic I-V curves of superconducting nanowires. Phys. Rev. B 68, 134515 (2003) ADSCrossRefGoogle Scholar
  258. 258.
    Shah, N., Pekker, D., Goldbart, P.M.: Inherent stochasticity of superconductor–resistor switching behavior in nanowires. Phys. Rev. Lett. 101, 207001 (2008) ADSCrossRefGoogle Scholar
  259. 259.
    Little, W.A.: Decay of persistent currents in small superconductors. Phys. Rev. 156, 396 (1967) ADSCrossRefGoogle Scholar
  260. 260.
    Langer, J.S., Ambegaokar, V.: Intrinsic resistive transition in narrow superconducting channels. Phys. Rev. 164, 498 (1967) ADSCrossRefGoogle Scholar
  261. 261.
    McCumber, D.E., Halperin, B.I.: Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B 1, 1054 (1970) ADSCrossRefGoogle Scholar
  262. 262.
    Giordano, N.: Evidence for macroscopic quantum tunneling in one-dimensional superconductors. Phys. Rev. Lett. 61, 2137 (1988) ADSCrossRefGoogle Scholar
  263. 263.
    Bezryadin, A., Lau, C.N., Tinkham, M.: Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971 (2000) ADSCrossRefGoogle Scholar
  264. 264.
    Lau, C.N., Markovic, N., Bockrath, M., Bezryadin, A., Tinkham, M.: Quantum phase slips in superconducting nanowires. Phys. Rev. Lett. 87, 217003 (2001) ADSCrossRefGoogle Scholar
  265. 265.
    Rogachev, A., Bollinger, A.T., Bezryadin, A.: Influence of high magnetic fields on the superconducting transition of one-dimensional Nb and MoGe nanowires. Phys. Rev. Lett. 94, 017004 (2005) ADSCrossRefGoogle Scholar
  266. 266.
    Altomare, F., Chang, A.M., Melloch, M.R., Hong, Y., Tu, C.W.: Evidence for macroscopic quantum tunneling of phase slips in long one-dimensional superconducting Al wires. Phys. Rev. Lett. 97, 017001 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Francesco Tafuri
    • 1
    • 2
    Email author
  • Davide Massarotti
    • 2
    • 3
  • Luca Galletti
    • 2
    • 3
  • Daniela Stornaiuolo
    • 2
    • 3
  • Domenico Montemurro
    • 4
  • Luigi Longobardi
    • 1
  • Procolo Lucignano
    • 3
    • 5
  • Giacomo Rotoli
    • 1
  • Giovanni Piero Pepe
    • 2
    • 3
  • Arturo Tagliacozzo
    • 2
    • 3
  • Floriana Lombardi
    • 6
  1. 1.Dip. di Ingegneria dell’InformazioneSeconda Università degli Studi di NapoliAversa (Ce)Italy
  2. 2.CNR-SPINNapoliItaly
  3. 3.Dip. Scienze FisicheUniversità di Napoli Federico IINapoliItaly
  4. 4.NEST-Scuola Normale Superiore and Istituto Nanoscienze–CNRPisaItaly
  5. 5.CNR-ISCRomaItaly
  6. 6.Dept. of Microtechnology and NanoscienceChalmers University of TechnologyGöteborgSweden

Personalised recommendations