Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 26, Issue 2, pp 361–369 | Cite as

One-Step Synthesis and Sintering of MgB2 by Spark Plasma Sintering

  • Viorel Sandu
  • Gheorghe Aldica
  • Raluca Damian
  • Zhi-Chao Guo
  • Hong-Li Suo
Original Paper

Abstract

We have studied the one-step procedure for simultaneous synthesis and sintering of SiC-doped MgB2 by the spark plasma sintering technique. Two types of composition, one in which Mg is strongly deficient, with the atomic ratio \(\mathrm{B/Mg} = 3.75\), and one in which Mg content is slightly higher than the stoichiometric value, specifically \(\mathrm{B/Mg} = 1.87\), were investigated. The amount of SiC was 12 wt.% and 9 wt.%, respectively. For comparison we also studied the way the deficit of Mg can be compensated in a second process of sintering. The sample with Mg deficit shows that SiC is left almost unreacted but the results are spectacular: the highest critical temperature, 36.5 K, the highest upper critical field and the highest self-field critical current density 6.7×105 A/cm2 at 10 K. In the sample with overstoichiometric Mg, SiC is decomposed, carbon diffuses within MgB2 but the critical temperature is only of 35.8 K and the zero-field critical current density is one order of magnitude lower. The compensation of the deficit of Mg in the two-step procedure is not efficient. The critical temperature is even lower, 35.8 K, the upper critical field is also lower despite SiC decomposition and C diffusion within MgB2 and the critical current density is slightly above 105 A/cm2. However, at low temperatures and fields of order 7 T the sample with overstoichiometric Mg and the sample prepared by the two-step procedure have higher critical current density.

Keywords

MgB2 SiC Carbon doping Mg-vacancies Spark plasma sintering Critical fields Critical current Scaling 

Notes

Acknowledgements

This work is supported by the Romanian Agency of Science and Research under the Grants PNII/138/2012 and 505/2011 at NIMP and by National High Technology Research and Development Program 863 of China under the Grant 2009AA032401, National Natural Science Foundation of China under the Grants 50771003 and 50802004 and Beijing Municipal Natural Science Foundation under the Grant 2092006.

References

  1. 1.
    Matsushita, T., Kiuchi, M., Yamamoto, A., Shimoyama, J., Kishio, K.: Supercond. Sci. Technol. 21, 015008 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    Sologubenko, A.V., Jun, J., Kazakov, S.M., Karpinski, J., Ott, H.R.: Phys. Rev. B 65, 180505 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    Perkins, G.K., Moore, J., Boguslavsky, Y., Cohen, L.F., Jun, J., Kazakov, S.M., Karpinski, J., Caplin, A.D.: Supercond. Sci. Technol. 15, 1156 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    Cava, R.J., Zandbergen, H.W., Inumaru, K.: Physica C 385, 8 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    Eltsev, Y.: Physica C 385, 162 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    Simon, F., Jánossy, A., Fehér, T., Murányi, F., Garaj, S., Forró, L., Petrovic, L., Bud’ko, S.L., Lapertot, G., Kogan, V.G., Canfield, P.C.: Phys. Rev. Lett. 87, 047002 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    Zehetmayer, M., Eisterer, M., Jun, J., Kazakov, S.M., Karpinski, J., Wisniewski, A., Weber, H.W.: Phys. Rev. B 66, 052505 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    Angst, A., Puzniak, R., Wisiewski, A., Jun, J., Kazakov, S.M., Karpinski, J., Ross, J., Keller, H.: Phys. Rev. Lett. 88, 167004 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    Canfield, P.C., Bud’ko, S.L., Finnemore, D.K.: Physica C 385, 1 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    Gurevich, A.: Phys. Rev. B 67, 184515 (2003) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Zhou, S.H., Ionescu, M., Liu, H.K., Munroe, P., Tomsic, M.: Appl. Phys. Lett. 81, 3419 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    Matsumoto, A., Kumakura, H., Kitaguchi, H., Hatakeyama, H.: Supercond. Sci. Technol. 16, 926 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    Kumakura, H., Kitaguchi, H., Matsumoto, A., Hatakeyama, H.: Appl. Phys. Lett. 84, 3669 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    Sumption, M.D., Bhatia, M., Rindfleisch, M., Tomsic, M.J., Soltannian, S., Dou, S.X., Collings, E.W.: Appl. Phys. Lett. 86, 092507 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    Dou, X.S., Shcherbakova, O., Yeoh, W.K., Kim, J.H., Soltanian, S., Wang, X.L., Senatore, C., Flukiger, R., Dhalle, M., Husnjak, O., Babic, E.: Phys. Rev. Lett. 98, 097002 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    Suo, H.L., Ma, L., Jiang, J.-M., Li, Y.-M., Zhang, Z.-L., Liu, M., Zhao, Y., He, D.-Y., Zhou, M.-L.: IEEE Trans. Appl. Supercond. 17, 2822 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    Vajpayee, A., Awana, V.P.S., Bhalla, G.L., Kishan, H.: Nanotechnology 19, 125708 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    Ma, Z.Q., Liu, Y.C., Zhao, Q., Yu, L.M.: Supercond. Sci. Technol. 22, 085015 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    Ma, Z.Q., Liu, Y.C., Hu, W., Gao, Z.M., Yu, L.M., Dong, Z.Z.: Scr. Mater. 61, 836 (2009) CrossRefGoogle Scholar
  20. 20.
    Song, K.J., Park, C., Kang, S.: Physica C 470, 470 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Dou, S.X., Lu, C., Zhou, S.H., Li, W.X.: Phys. Rev. B 81, 094501 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    Shi, Z.X., Susner, M.A., Sumption, M.D., Collings, E.W., Peng, X., Rindfleisch, M., Tomsic, M.J.: Supercond. Sci. Technol. 24, 065015 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    Susner, M.A., Yang, Y., Sumption, M.D., Collings, E.W., Rindfleisch, M.A., Tomsic, M.J., Marzik, J.V.: Supercond. Sci. Technol. 24, 012001 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    Lee, S.Y., Yoo, S.I., Kim, Y.W., Hwang, N.M., Kim, D.Y.: J. Am. Ceram. Soc. 86, 1800 (2003) CrossRefGoogle Scholar
  25. 25.
    Schmidt, J., Schnelle, W., Grin, Y., Kniep, R.: Solid State Sci. 5, 535 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    Shim, S.H., Shim, K.B., Yoon, J.W.: J. Am. Ceram. Soc. 88, 858 (2005) CrossRefGoogle Scholar
  27. 27.
    Song, K.J., Park, C., Kim, S.W., Ko, R.K., Ha, H.S., Kim, H.S., Oh, S.S., Kwon, Y.K., Moon, S.H., Yoo, S.I.: Physica C 426, 588 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    Sandu, V., Aldica, G., Badica, P., Groza, J.R., Nita, P.: Supercond. Sci. Technol. 20, 836 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    Kang, D.K., Kim, D.W., Choi, S.H., Kim, C.J., Ahn, I.S.: Met. Mater. Int. 15, 15 (2009) CrossRefGoogle Scholar
  30. 30.
    Cook, L.P., Klein, R., Wong-Ng, W., Huang, Q., Ribeiro, R.A., Canfield, P.C.: IEEE Trans. Appl. Supercond. 15, 3227 (2005) CrossRefGoogle Scholar
  31. 31.
    Balducci, G., Brutti, S., Ciccioli, A., Gigli, G., Manfrinetti, P., Palenzona, A., Butman, M.F., Kudin, L.: J. Phys. Chem. Solids 66, 292 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    Liang, G., Fang, H., Luo, Z.P., Hoyt, C., Yen, F., Guchhait, S., Lv, B., Markert, J.T.: Supercond. Sci. Technol. 20, 697 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    Avdeev, M., Jorgensen, J.D., Ribeiro, R.A., Bud’ko, S.L., Canfield, P.C.: Physica C 387, 301 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    Wilke, R.H.T., Bud’ko, S.L., Canfield, P.C., Finnemore, D.K., Suplinskas, R.J., Hannahs, S.T.: Phys. Rev. Lett. 92, 217003 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    Kazakov, S.M., Puzniak, R., Rogacki, K., Mironov, A.V., Zhigadlo, N.D., Jun, J., Soltmann, Ch., Batlogg, B., Karpinski, J.: Phys. Rev. 71, 024533 (2005) ADSGoogle Scholar
  36. 36.
    Tarantini, C., Braccini, V., Ferdeghini, C., Gatti, F., Manfrinetti, P., Marre, D., Palenzona, A., Pallecchi, I., Bernini, C., Tumino, A., Sheikin, I., Aebersold, H.U., Lehmann, E., Putti, A.: IEEE Trans. Appl. Supercond. 15, 3223 (2005) CrossRefGoogle Scholar
  37. 37.
    Chen, S.K., Serquis, A., Serrano, G., Yates, K.A., Blamire, M.G., Guthrie, D., Cooper, J., Wang, H., Margadonna, S., MacManus-Driscoll, J.L.: Adv. Funct. Mater. 18, 113–120 (2008) CrossRefGoogle Scholar
  38. 38.
    Zhigadlo, N.D., Katrych, S., Karpinski, J., Batlogg, B., Bernardini, F., Massidda, S., Puzniak, R.: Phys. Rev. B 81, 054520 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    Zeng, X.H., Pogrebnyakov, A.V., Zhu, M.H., Jones, J.E., Xi, X.X., Xu, S.Y., Wertz, E., Li, Q., Redwing, J.M., Lettieri, J., Vaithyanathan, V., Schlom, D.G., Liu, Z.-K., Trithaveesak, O., Schuber, J.: Appl. Phys. Lett. 82, 2097 (2003) ADSCrossRefGoogle Scholar
  40. 40.
    Chromik, Š., Huran, J., Štrbík, V., Španková, M., Vávra, I., Bohne, W., Röhrich, J., Strub, E., Kováč, P., Stanček, S.: Supercond. Sci. Technol. 19, 577 (2006) ADSCrossRefGoogle Scholar
  41. 41.
    DeFouw, J.D., Quintana, J.P., Dunand, D.C.: Acta Mater. 56, 1680 (2008) CrossRefGoogle Scholar
  42. 42.
    Tenne, D.A., Xi, X.X., Pogrebnyakov, A.V., Redwing, J.M.: Phys. Rev. B 71, 132512 (2005) ADSCrossRefGoogle Scholar
  43. 43.
    Zheng, J.-C., Zhu, Y.: Phys. Rev. B 73, 024509 (2006) ADSCrossRefGoogle Scholar
  44. 44.
    Askerzade, N., Gencer, A., Güçlü, N.: Supercond. Sci. Technol. 15, L13 (2002) ADSCrossRefGoogle Scholar
  45. 45.
    Mudgel, M., Sharath Chandra, L.S., Ganesan, V., Bhalla, G.L., Kishan, H., Awana, V.P.S.: J. Appl. Phys. 106, 033904 (2009) ADSCrossRefGoogle Scholar
  46. 46.
    Eisterer, M.: Supercond. Sci. Technol. 20, R47 (2007) ADSCrossRefGoogle Scholar
  47. 47.
    Rowell, J.M.: Supercond. Sci. Technol. 16, R17 (2003) ADSCrossRefGoogle Scholar
  48. 48.
    Yamamoto, A., Shimoyama, J., Ueda, S., Katsura, Y., Iwayama, I., Horii, S., Kishio, K.: Appl. Phys. Lett. 86, 212502 (2005) ADSCrossRefGoogle Scholar
  49. 49.
    Miura, O., Tomioka, H., Ito, D., Harada, N.: J. Phys. Conf. Ser. 97, 012156 (2008) ADSCrossRefGoogle Scholar
  50. 50.
    Matsushita, T.: Flux Pinning in Superconductors, pp. 246–250. Springer, Berlin (2007) Google Scholar
  51. 51.
    Kramer, E.J.: J. Appl. Phys. 44, 1360 (1973) ADSCrossRefGoogle Scholar
  52. 52.
    Eisterer, M.: Phys. Rev. B 77, 144524 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Viorel Sandu
    • 1
  • Gheorghe Aldica
    • 1
  • Raluca Damian
    • 1
  • Zhi-Chao Guo
    • 2
  • Hong-Li Suo
    • 2
  1. 1.National Institute of Materials PhysicsMagureleRomania
  2. 2.The Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations