Journal of Superconductivity and Novel Magnetism

, Volume 26, Issue 2, pp 443–448 | Cite as

Structural, Optical and Multiferroic Properties of BiFeO3 Nanoparticles Synthesized by Soft Chemical Route

  • Manisha Arora
  • P. C. Sati
  • Sunil Chauhan
  • Sandeep Chhoker
  • A. K. Panwar
  • Manoj KumarEmail author
Original Paper


BiFeO3 nanoparticles were prepared via a soft chemical method using citric acid and tartaric acid routes followed by calcination at low temperature. Structural characterization showed remarkably different conditions for pure phase formation from both routes. The tartaric acid route was effective in obtaining pure phase BiFeO3 nanoparticles while citric acid route required leaching in dilute nitric acid to remove impurity phases. Further optical, magnetic, and dielectric characterizations of pure phase BiFeO3 nanoparticles obtained by tartaric acid route were done. X-ray diffraction and Raman spectroscopy confirmed the distorted rhombohedral structure of BiFeO3 nanoparticles. The average crystallite size of BiFeO3 nanoparticles was found to vary in the range 30–50 nm. Fourier Transformed Infrared spectra of BiFeO3 samples calcined at different temperatures were studied in order to analyze various bond formations in the samples. UV-Visible diffuse absorption showed that BFO nanoparticles strongly absorb visible light in the wavelength region of 400–580 nm with absorption cut-off wavelength of 571 nm. The band gap of BiFeO3 nanoparticles was found to be 2.17 eV as calculated from absorption coefficient spectra. Magnetic measurement showed saturated hysteresis loop indicating ferromagnetic behavior of BiFeO3 nanoparticles at room temperature. Temperature dependent dielectric constant showed anomaly well below the antiferromagnetic Néel temperature indicating decrease in antiferromagnetic Néel temperature of BiFeO3 nanoparticles.


Bismuth ferrite Nanoparticles Optical property Magnetism 



This work was financially supported by Department of Science and Technology (DST) India through grant No. SR/FTP/PS-91/2009. Manisha Arora is thankful to JIIT Noida for providing Teaching Assistance.


  1. 1.
    Fiebig, M., Lottermoser, Th., Frohlich, D., Goltsev, A.V., Pisarev, R.V.: Nature 419, 818 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    Hill, N.A.: J. Phys. Chem. B 104, 6694 (2000) CrossRefGoogle Scholar
  3. 3.
    Fischer, P., Polomska, M., Sosnowska, I., Szymanskig, M.: J. Phys. C 13, 1931 (1980) ADSGoogle Scholar
  4. 4.
    Wang, Y.P., Zhou, L., Zhang, M.F., Chen, X.Y., Liu, J.M., Liu, Z.G.: Appl. Phys. Lett. 84, 1731 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    Selbach, S.M., Tybell, T., Einarsrud, MA, Grande, T.: Chem. Mater. 19, 6478 (2007) CrossRefGoogle Scholar
  6. 6.
    Dai, H., Li, T., Xue, R., Chen, Z., Xue, Y.: J. Supercond. Nov. Magn. 25, 109 (2012) CrossRefGoogle Scholar
  7. 7.
    Tang, Y.H., Han, T.C., Liu, H.L., Lin, J.G.: J. Supercond. Nov. Magn. (2011). doi: 10.1007/s10948-011-1257-7 Google Scholar
  8. 8.
    Mazumder, R., Ghosh, S., Mondal, P., Bhattacharya, D., Dasgupta, S., Das, N., Sen, A., Tyagi, A.K., Sivakumar, M., Takami, T., Ikuta, H.: J. Appl. Phys. 100, 033908 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    Takahashi, K., Kida, N., Tonouchi, M.: Phys. Rev. Lett. 96, 117402 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    Gao, F., Chen, X., Yin, K., Dong, S., Ren, Z., Yuan, F., Yu, T., Zou, Z., Liu, J.M.: Adv. Mater. 19, 2889 (2007) CrossRefGoogle Scholar
  11. 11.
    Gao, F., Yuan, Y., Wang, K.F., Chen, X.Y., Chen, F., Liu, J.M.: Appl. Phys. Lett. 89, 102506 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    Fukumura, H., Matsui, S., Harima, H., Takahashi, T., Itoh, T., Kisoda, K., Tamada, M., Noguchi, Y., Miyayama, M.: J. Phys. Condens. Matter 19, 365224 (2007) CrossRefGoogle Scholar
  13. 13.
    Singh, M.K., Jang, H.M., Ryu, S., Jo, M.H.: Appl. Phys. Lett. 88, 42907 (2006) CrossRefGoogle Scholar
  14. 14.
    Yang, H., Xian, T., Wei, Z.Q., Dai, J.F., Jiang, J.L., Feng, W.J.: J. Sol-Gel Sci. Technol. 58, 238 (2011) CrossRefGoogle Scholar
  15. 15.
    Bhushan, B., Basumallick, A., Bandopadhyay, S.K., Vasanthacharya, N.Y., Das, D.: J. Phys. D, Appl. Phys. 42, 065004 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    Jaiswal, A., Das, R., Vivekanand, K., Abraham, P.M., Adyanthaya, S., Poddar, P.: J. Phys. Chem. C 114, 2108 (2010) CrossRefGoogle Scholar
  17. 17.
    Zhang, S.T., Lu, M.H., Wu, D., Chen, Y.F., Ming, N.B.: Appl. Phys. Lett. 87, 262907 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    Chang, D.A., Lin, P., Tseng, T.Y.: J. Appl. Phys. 77, 4445 (1995) ADSCrossRefGoogle Scholar
  19. 19.
    Joshi, U.A., Jang, J.S., Borse, P.H., Lee, J.S.: Appl. Phys. Lett. 92, 242106 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    Maxwell, P.C.: Electricity and Magnetism, vol. 1. Oxford University Press, Oxford. Section 328 Google Scholar
  21. 21.
    Koops, C.G.: Phys. Rev. 83, 121 (1951) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Manisha Arora
    • 1
  • P. C. Sati
    • 1
  • Sunil Chauhan
    • 1
  • Sandeep Chhoker
    • 1
  • A. K. Panwar
    • 2
  • Manoj Kumar
    • 1
    Email author
  1. 1.Department of Physics and Materials Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Department of Applied PhysicsDelhi Technological UniversityDelhiIndia

Personalised recommendations