Surface Impedance of YBa2Cu3O7−δ Films Grown on MgO Substrate as a Function of Film Thickness

  • A. A. Barannik
  • N. T. Cherpak
  • M. S. Kharchenko
  • R. Semerad
  • S. A. Vitusevich
Original Paper

Abstract

The surface impedance characteristics of epitaxial YBa2Cu3O7−δ films of thickness df = 75, 150, 300, 600 nm, produced by magnetron thermal co-evaporation onto single crystal MgO substrates was studied using measurement technique based on Ka-band whispering gallery mode (WGM) dielectric resonator (DR) fabricated from single crystal sapphire. Characterization of the unpatterned films was carried out in temperature interval from 20 K to 90 K. It was shown that the effective surface resistance approaches the minimum value for df>300 nm. At the same time, intrinsic impedance properties are practically independent on df in the studied interval of df values. The temperature dependence of London penetration depth was estimated experimentally and approximated with the model expressions. Effect of reducing the surface resistance of approximately two times at low temperatures one year later after their manufacture was registered for all films(except the film of 75 nm thickness). The effect may be explained by changes of the film parameters in time after the film light overdoping.

Keywords

YbaCO thin films Surface impedance Quasioptical resonator 

References

  1. 1.
    Hein, M.: High-temperature superconductor thin films at microwave frequencies, Springer Tracts in Modern Physics, vol. 165. Springer, Berlin (1999) Google Scholar
  2. 2.
    Hensen, S., Muller, G., Rick, C., Scharnberg, C.: In-plane surface impedance of epitaxial YBa2Cu3O7−δ films: comparison of experimental data taken at 87 GHz with d- and s-wave models of superconductivity. Phys. Rev. B 56, 6237–6264 (1997) CrossRefADSGoogle Scholar
  3. 3.
    Pan, V., Kalenyuk, O., Kasatkin, O., Komashko, V., Ivanyuta, O., Melkov, G.: Microwave response of single crystal YBa2Cu3O7−δ films as a probe for pairing symmetry. J. Low Temp. Phys. 32, 497–505 (2006) CrossRefGoogle Scholar
  4. 4.
    Barannik, A., Bunyaev, S., Cherpak, N.: On the low-temperature microwave response of a YBa2Cu3O7−δ epitaxial film determined by a new measurement technique. J. Low Temp. Phys. 34, 977–981 (2008) CrossRefGoogle Scholar
  5. 5.
    Porch, A., Lancaster, M., Humphreys, R.: The coplanar resonator technique for determining the surface impedance of YBa2Cu3O7−δ thin films. IEEE Trans. Microwave Theory Tech. 43, 306–314 (1995) CrossRefADSGoogle Scholar
  6. 6.
    Avenhaus, B., Porch, A., Lancaster, M., Hensen, S., Lenkens, M., Orbach-Werbig, S., Muller, E., Dahne, U., Tellmann, N., Klein, N., Dubourdieu, C., Senateur, J., Thomas, O., Karl, H., Stritzker, B., Edwards, J., Humphreys, R.: Microwave properties of YBCO thin films. IEEE Trans. Appl. Supercond. 51, 737–740 (1995) Google Scholar
  7. 7.
    Lee, S., Cho, Y., Soh, B., Park, B., Jung, C., Ahn, J., Kim, Y., Kim, C., Hahn, T., Choi, S., Oh, B., Fedorov, Moon S. V, Denisov, A.: A comparative study of the surface resistances and microwave penetration depths of YBa2Cu3O7-δ thin films with various thicknesses. J. Korean Phys. Soc. 31, 418–422 (1997) Google Scholar
  8. 8.
    Stork, F., Beall, K., Roshko, A., DeGroot, D., Rudman, D., Ono, H., Krupka, J.: Surface resistance and morphology of YBCO films as a function of thickness. IEEE Trans. Appl. Supercond. 71, 921–924 (1997) Google Scholar
  9. 9.
    Kästner, G., Schäfer, C., Senz, K.T. St, Hein, M., Lorenz, M., Hochmuth, H., Hesse, D: Microstructure and microwave surface resistance of typical YBaCuO thin films on sapphire and LaAlO3. Supercond. Sci. Technol. 12, 366–375 (1999) CrossRefADSGoogle Scholar
  10. 10.
    Oshima, S., Kusunoku, M., Inadomaru, M., Mukaida, M., Tanaka, Y., Ihora, H.: Relationship between the surface resistance and depairing current density of superconductors. IEEE Trans. Appl. Supercond. 13, 3578–3580 (2003) CrossRefGoogle Scholar
  11. 11.
    Shen, Z.-Y.: High-temperature superconducting microwave circuits. Artech House, Boston (1994) Google Scholar
  12. 12.
    Vendik, O., Vendik, I., Samoilova, T.: Nonlinearity of superconductivity transmission line and microstrip resonator. IEEE Trans. Microw. Theory Tech. 45, 173–178 (1997) CrossRefADSGoogle Scholar
  13. 13.
    Booth, J., Rudman, D., Ono, R.: A self-attenuating superconducting transmission line for use as a microwave power limiter. IEEE Trans. Appl. Supercond. 13, 305–308 (2003) CrossRefGoogle Scholar
  14. 14.
    Cherpak, N., Lavrinovich, A., Kalenyuk, A., Pan, V., Gubin, A., Khramota, V., Kurakin, A., Vitusevich, S.: Biased coplanar waveguide on the basis of high-T c superconducting thin film with nonlinear impedance. Telecommun. Radio Eng., 69, 1357–1364 (2010) CrossRefGoogle Scholar
  15. 15.
    Cherpak, N., Barannik, A., Prokopenko, Yu, Filipov, Yu, Vitusevich, S.: Accurate microwave technique of surface resistance measurement of large-area hts films using sapphire quasioptical resonator. IEEE Trans. Appl. Supercond. 13, 3570–3573 (2003) CrossRefGoogle Scholar
  16. 16.
    Barannik, A., Bunyaev, S., Cherpak, N., Prokopenko, Yu, Kharchenko, A., Vitusevich, S.: Whispering gallery mode hemisphere dielectric resonators with impedance plane. IEEE Trans. Microw. Theory Tech. 58, 2682–2691 (2010) CrossRefADSGoogle Scholar
  17. 17.
    Cherpak, N., Barannik, A., Bunyaev, S., Prokopenko, Yu, Torokhtii, K., Vitusevich, S.: Millimeter-wave surface impedance characterization of hts films and single crystals using quasi-optical sapphire resonator. IEEE Trans. Appl. Supercond. 21, 591–594 (2011) CrossRefADSGoogle Scholar
  18. 18.
    Hein, M., Humphreys, R., Hirst, P., Park, S., Oates, D.: Nonlinear microwave response of epitaxial ybacuo films of varying oxygen content on MgO substrates. J. Supercond. 16, 895–904 (2003) CrossRefGoogle Scholar
  19. 19.
    Skresanov, V., Glamazdin, V., Cherpak, N.: The novel approach to coupled mode parameters recovery from microwave resonator amplitude-frequency response. In: Proceedings of the 41st European Microwave Conference (Manchester, UK) p. 826 (2011) Google Scholar
  20. 20.
    Lancaster, M.: Passive microwave device applications of high temperature superconductors. Cambridge University Press, Cambridge (1997) CrossRefGoogle Scholar
  21. 21.
    Klein, N., Chaloupka, H., Müller, G., Orbach, S., Piel, H., Roas, B., Schultz, L., Klein, U., Peiniger, M.: The effective microwave surface impedance of high T c thin films. J. Appl. Phys. 67, 6940–6945 (1990) CrossRefADSGoogle Scholar
  22. 22.
    Cherpak, N.: High-temperature superconductors and mm wave technology: a challenge and perspectives. In: Proceedings of the Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves, Kharkov, Ukraine, p. 4 (2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. A. Barannik
    • 1
  • N. T. Cherpak
    • 1
  • M. S. Kharchenko
    • 1
  • R. Semerad
    • 2
  • S. A. Vitusevich
    • 3
  1. 1.Usikov Institute of Radiophysics and ElectronicsNational Academy of Sciences of UkraineKharkivUkraine
  2. 2.THEVA CompanyIsmaningGermany
  3. 3.Peter Grünberg InstituteForschungszentrum JülichJülichGermany

Personalised recommendations