Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 5, pp 1357–1360

Correcting 100 Years of Misunderstanding: Electric Fields in Superconductors, Hole Superconductivity, and the Meissner Effect

Original Paper

Abstract

From the outset of superconductivity research it was assumed that no electrostatic fields could exist inside superconductors, and this assumption was incorporated into conventional London electrodynamics. Yet the London brothers themselves initially (in 1935) had proposed an electrodynamic theory of superconductors that allowed for static electric fields in their interior, which they unfortunately discarded a year later. I argue that the Meissner effect in superconductors necessitates the existence of an electrostatic field in their interior, originating in the expulsion of negative charge from the interior to the surface when a metal becomes superconducting. The theory of hole superconductivity predicts this physics, and associated with it a macroscopic spin current in the ground state of superconductors (“Spin Meissner effect”), qualitatively different from what is predicted by conventional BCS–London theory. A new London-like electrodynamic description of superconductors is proposed to describe this physics. Within this theory superconductivity is driven by lowering of quantum kinetic energy, the fact that the Coulomb repulsion strongly depends on the character of the charge carriers, namely whether electron- or hole-like, and the spin–orbit interaction. The electron–phonon interaction does not play a significant role, yet the existence of an isotope effect in many superconductors is easily understood. In the strong coupling regime, the theory appears to favor local charge inhomogeneity. The theory is proposed to apply to all superconducting materials, from the elements to the high Tc cuprates and pnictides, is highly falsifiable, and explains a wide variety of experimental observations.

Keywords

Electric field Hole superconductivity 

References

  1. 1.
    Mendelssohn, K.: The Quest for Absolute Zero, p. 219. McGraw–Hill, New York (1966) Google Scholar
  2. 2.
    Alexandrov, A.S.: private communication to this author Google Scholar
  3. 3.
    Kamerlingh Onnes, H.: Comm. Phys. Lab. Univ. Leiden 120b (1911) Google Scholar
  4. 4.
    Fröhlich, H.: Phys. Rev. 79, 845 (1950) ADSMATHCrossRefGoogle Scholar
  5. 5.
    Hirsch, J.E.: Phys. Scr. 84, 045705 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    Condon, E.U.: Proc. Natl. Acad. Sci. USA 35, 488 (1949) ADSMATHCrossRefGoogle Scholar
  7. 7.
    Tinkham, M.: Introduction to Superconductivity, 2nd edn. McGraw-Hill, New York (1996) Google Scholar
  8. 8.
    London, F., London, H.: Proc. R. Soc. London A 149, 71 (1935) ADSMATHCrossRefGoogle Scholar
  9. 9.
    Von Laue, M., London, F., London, H.: Z. Phys. 96, 359 (1935) ADSMATHCrossRefGoogle Scholar
  10. 10.
    London, H.: Proc. Roy. Soc. London A 155, 102 (1936) ADSCrossRefGoogle Scholar
  11. 11.
    London, F.: Superfluids, vol. I. Dover, New York (1950) MATHGoogle Scholar
  12. 12.
    Hirsch, J.E.: Physica C 199, 305 (1992) ADSCrossRefGoogle Scholar
  13. 13.
    Hirsch, J.E., Marsiglio, F.: Phys. Rev. B 62, 15131 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    Hirsch, J.E.: Int. J. Mod. Phys. B 25, 1173 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    Hirsch, J.E.: Europhys. Lett. 81, 67003 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    Hirsch, J.E.: Phys. Rev. B 68, 184502 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    Hirsch, J.E.: Phys. Rev. B 69, 214515 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    Hirsch, J.E.: Ann. Phys. (Berlin) 17, 380 (2008) ADSMATHCrossRefGoogle Scholar
  19. 19.
    Hirsch, J.E.: Phys. Rev. Lett. 92, 016402 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    Tao, R., Xu, X., Lau, Y.C., Shiroyanagi, Y.: Physica C 377, 357 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    Hirsch, J.E.: Phys. Rev. Lett. 94, 187001 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    Hirsch, J.E.: Mod. Phys. Lett. B 25, 2219 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of California, San DiegoLa JollaUSA

Personalised recommendations