Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 7, pp 2121–2126 | Cite as

Design of New Superconducting Materials, and Point-Contact Spectroscopy as a Probe of Strong Electron Correlations

  • Laura H. Greene
  • Hamood Z. Arham
  • Cassandra R. Hunt
  • Wan Kyu Park
Original Paper

Abstract

At this centenary of the discovery of superconductivity, the design of new and more useful superconductors remains as enigmatic as ever. These materials play crucial roles both for fundamental science and applications, and they hold great promise in addressing our global energy challenge. The recent discovery of a new class of high-temperature superconductors has made the community more enthusiastic than ever about finding new superconductors. Historically, these discoveries were almost completely guided by serendipity, and now, researchers in the field have grown into an enthusiastic global network to find a way, together, to predictively design new superconductors. After a short history of discoveries of superconducting materials, we share our own guidelines for searching for high-temperature superconductors. Finally, we show how point-contact spectroscopy (PCS) is used to detect strong correlations in the normal state, with a focus on the normal state region of the Fe-based superconductors, defining a new region in the phase diagram of Ba(Fe1−x Co x )2As2.

Keywords

History of superconducting materials Design of new superconductors Point-contact spectroscopy Fe-based superconductors High-temperature superconductors 

Notes

Acknowledgements

The PCS work has been in collaboration with P.H. Tobash, F. Ronning, E.D. Bauer, J.L. Sarrao, J.D. Thompson, J. Gillett, S.D. Das, S.E. Sebastian, A. Thaler, S.L. Bu’dko, P.C. Canfield, Z.J. Xu, J.S. Wen, Z.W. Lin, Q. Li, and G. Gu. This work is supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE Award No. DE-AC0298CH1088.

References

  1. 1.
    van Delft, D., Kes, P.: The discovery of superconductivity. Phys. Today 63, 38–43 (2010) CrossRefGoogle Scholar
  2. 2.
    Blundell, S.: Superconductivity, a Very Short Introduction. Oxford University Press, Oxford (2009) Google Scholar
  3. 3.
    Matthias, B.T.: Superconductivity in the cobalt–silicon system. Phys. Rev. 87, 380 (1952) ADSCrossRefGoogle Scholar
  4. 4.
    Geballe, T.H., Hulm, J.K.: Bernd Theodor Matthias. National Academy Press, Washington (1996) Google Scholar
  5. 5.
    Hardy, G.F., Hulm, J.K.: Superconducting silicides and germanides. Phys. Rev. 89, 884 (1952) CrossRefGoogle Scholar
  6. 6.
    Foner, S., Mcniff, E.J. Jr., Gavaler, J.R., Janocko, J.A.: Upper critical fields of Nb3Ge thin film superconductors. Phys. Lett. A 47, 485–486 (1974) ADSCrossRefGoogle Scholar
  7. 7.
    Hulm, J.K., Blaugher, R.D.: Superconducting solid solution alloys of the transition elements. Phys. Rev. 123, 1569–1580 (1961) ADSCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Pfotenhauer, J.: In: Hempstead, C., Worthington, W.E. (eds.) Encyclopedia of 20th-Century Technology, vol. 2, pp. 769–770. Taylor Francis, London (2005) Google Scholar
  10. 10.
    Steglich, F., Aarts, J., Bredl, C.D., Lieke, W., Meschede, D., Franz, W., Schafer, H.: Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43, 1892–1896 (1979) ADSCrossRefGoogle Scholar
  11. 11.
    Coleman, P.: Heavy fermions: electrons at the edge of magnetism. In: Kronmuller, H., Parkin, S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials. Fundamentals and Theory, vol. 1, pp. 95–148. Wiley, New York (2007) Google Scholar
  12. 12.
    Heggee, H., Petrovic, C., Moshopoulou, E.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D.: Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84, 4986–4989 (2000) ADSCrossRefGoogle Scholar
  13. 13.
    Petrovic, C., Pagluiso, P.G., Hundley, M.F., Moschovich, R., Sarrao, J.L., Thompson, J.D., Fisk, Z., Monthoux, P.: Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys., Condens. Matter 13, L337–L342 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    Cohen, M.L.: The existence of a superconducting state in semiconductors. Rev. Mod. Phys. 36, 240–243 (1964) ADSCrossRefGoogle Scholar
  15. 15.
    Mattheiss, L.F., Hamann, D.R.: Electronic structure of BaPb1−xBixO3. Phys. Rev. B 28, 4227–4241 (1983) ADSCrossRefGoogle Scholar
  16. 16.
    Mattheiss, L.F., Gyorgy, E.M., Johnson, D.W. Jr.: Superconductivity above 20 K in the Ba–K–Bi–O system. Phys. Rev. B 37, 3745–3746 (1988) ADSCrossRefGoogle Scholar
  17. 17.
    Cava, R.J., Batlogg, B., Krajewski, J.J., Farrow, R., Rupp, L.W. Jr., White, A.E., Short, K., Peck, W.F., Kometani, T.: Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature 332, 814–816 (1988) ADSCrossRefGoogle Scholar
  18. 18.
    Bednorz, J.G., Müller, K.A.: Possible high T c superconductivity in the Ba–La–Cu–O system. Z. Phys., B Condens. Matter 64, 189–193 (1986) ADSCrossRefGoogle Scholar
  19. 19.
    Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Phys. Rev. Lett. 58, 908–910 (1987) ADSCrossRefGoogle Scholar
  20. 20.
    Schilling, Cantoni, M., Guo, J.D., Ott, H.R.: Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56–58 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    BES-DoE: Basic Research Needs for Superconductivity (2006). http://www.sc.doe.gov/bes/reports/files/SC_rpt.pdf
  22. 22.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with T c=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008) CrossRefGoogle Scholar
  23. 23.
    Tesanovic, Z.: Private communications (2008) Google Scholar
  24. 24.
    Ren, Z.-A., Lu, W., Yang, J., Yi, W., Shen, X.-L., Li, Z.-C., Che, G.-C., Dong, X.-L., Sun, L.-L., Zhou, F., Zhao, Z.-X.: Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFx]FeAs. Chin. Phys. Lett. 25, 2215–2216 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    Greene, L.H.: Taming serendipity. Phys. World 24, 41–43 (2011) Google Scholar
  26. 26.
    Abbamonte, P. and other CES members: Private communications (2009) Google Scholar
  27. 27.
    Fisk, Z., Ott, H.-R., Thompson, J.D.: Superconducting materials: what the record tells us. Philos. Mag. 89, 2111–2115 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    Jansen, A.G.M., van Gelder, A.P., Wyder, P.: Point contact spectroscopy in metals. J. Phys. C, Solid State Phys. 13, 6073–6118 (1980) ADSCrossRefGoogle Scholar
  29. 29.
    Naidyuk, Y.G., Yanson, I.K.: Point Contact Spectroscopy. Springer Series in Solid-State Sciences, vol. 145. Springer, Berlin (2004) Google Scholar
  30. 30.
    Park, W.K., Greene, L.H.: Andreev reflection and order parameter symmetry in heavy-fermion superconductors: the case of CeCoIn5. J. Phys., Condens. Matter 21, 103203 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    Daghero, D., Gonnelli, R.S.: Probing multiband superconductivity by point-contact spectroscopy. Supercond. Sci. Technol. 23, 043001 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    Blonder, G.E., Tinkham, M., Klapwijk, T.M.: Transition from metallic to tunneling regimes in superconducting microconstructions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1983) ADSCrossRefGoogle Scholar
  33. 33.
    Park, W.K., Sarrao, J.L., Thompson, J.D., Greene, L.H.: Andreev reflection in heavy-fermion superconductors and order parameter symmetry in CeCoIn5. Phys. Rev. Lett. 100, 177001 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    Park, W.K., Bauer, E.D., Sarrao, J.L., Thompson, J.D., Greene, L.H.: On the origin of the conductance asymmetry in CeMIn5 (M=Co, Rh, Ir). J. Phys., Condens. Matter 150, 052207 (2009) Google Scholar
  35. 35.
    Park, W.K., Pham, L.D., Bianchi, A.D., Capan, C., Fisk, Z., Greene, L.H.: Point-contact spectroscopy of competing/coexisting orders in Cd-doped CeCoIn5. J. Phys. Conf. Ser. 150, 052208 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    Park, W.K., Stalzer, H., Sarrao, J.L., Thompson, J.D., Pham, L., Frederick, J., Canfield, P., Greene, L.H.: Point-contact Andreev reflection spectroscopy of heavy-fermion-metal/superconductor junctions. Physica B 403, 818–819 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    Park, W.K., Tobash, P., Ronning, F., Bauer, E.D., Sarrao, J.L., Thompson, J.D., Greene, L.H.: Observation of the hybridization gap and Fano resonance in the Kondo lattice URu2Si2. Phys. Rev. Lett. (in press). arXiv:1110.5541
  38. 38.
    Arham, H.Z., Hunt, C.R., Park, W.K., Gillett, J., Das, S.D., Sebastian, S., Xu, J., Wen, J.S., Lin, Z.W., Li, Q., Gu, G.D., Thaler, A., Bu’dko, S.L., Canfield, P.C., Greene, L.H.: Gap-like feature in the normal state of Ba(Fe1−xCoxAs)2, Sr(FeAs)2, and Fe1+yTex revealed by point contact spectroscopy. arXiv:1108.2749
  39. 39.
    Arham, H.Z., Hunt, C.R., Park, W.K., Gillett, J., Das, S.D., Sebastian, S.E., Xu, Z.J., Wen, J.S., Lin, Z.W., Li, Q., Gu, G., Thaler, A., Ran, S., Bud’ko, S.L., Canfield, P.C., Chung, D.Y., Kanatzidis, M.G., Greene, L.H.: Detection of orbital fluctuations above the structural transition temperature in the iron pnictides and chalcogenides. Phys. Rev. B (accepted). arXiv:1201.2479
  40. 40.
    Lee, W.-C., Phillips, P.: Non-Fermi liquid due to orbital fluctuations in iron pnictide superconductors. arXiv:1110.5917
  41. 41.
    Chu, J.-H., Analytis, J.G., De Greve, K., McMahon, P.L., Islam, Z., Yamamoto, Y., Fisher, I.R.: In-plane resistivity anisotropy in an underdoped iron pnictide superconductor. Science 329, 824–826 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    Tanatar, M.A., Blomberg, E.C., Kreyssig, A., Kim, M.G., Ni, N., Thaler, A., Bud’ko, S.L., Goldman, P.C.A.I., Mazin, I.I., Prozorov, R.: Uniaxial-strain mechanical detwinning of CaFe2As2 and BaFe2As2 crystals: optical and transport study. Phys. Rev. B 81, 1–10 (2010) CrossRefGoogle Scholar
  43. 43.
    Dusza, A., Lucarelli, A., Pfuner, F., Chu, J.-H., Fisher, I.R., Degiorgi, L.: Anisotropic charge dynamics in detwinned Ba(Fe1−xCox)2As2. Europhys. Lett. 93, 37002 (2011) ADSCrossRefGoogle Scholar
  44. 44.
    Yi, M., Lu, D., Chu, J.-H., Analytis, J.G., Sorini, A.P., Kemper, A.F., Moritz, B., Mo, S.-K., Moore, R.G., Hashimoto, M., Lee, W.-S., Hussain, Z., Devereaux, T.P., Fisher, I.R., She, Z.-X.: Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1−xCox)2As2 above the spin density wave transition. Proc. Natl. Acad. Sci. USA 108, 6878–6883 (2011) ADSCrossRefGoogle Scholar
  45. 45.
    Harriger, L.W., Luo, H.Q., Liu, M.S., Frost, C., Hu, J.P., Norman, M.R., Dai, P.: Nematic spin fluid in the tetragonal phase of BaFe2As2. Phys. Rev. B 84, 054544 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    Park, H., Haule, K., Kotliar, G.: Magnetic excitation spectra in BaFe2Ss2: A two-particle approach within a combination of the density functional theory and the dynamical mean-field theory method. Phys. Rev. Lett. 107, 137007 (2011) ADSCrossRefGoogle Scholar
  47. 47.
    Chuang, T.-M., Allan, M.P., Lee, J., Xie, Y., Ni, N., Bud’ko, S.L., Boebinger, G.S., Canfield, P.C., Davis, J.C.: “Nematic electronic structure in the parent” state of the iron-based superconductor Ca(Fe1−xCox)2As2. Science 327, 181–184 (2010) ADSCrossRefGoogle Scholar
  48. 48.
    Kasahara, S., Shi, H., Okazaki, R., Hashimoto, K., Yamashita, M., Shibauchi, T., Terashima, T., Matsuda, Y.: Magnetic torque evidence for broken rotational symmetry in the tetragonal phase of BaFe2(As1−xPx)2 single crystals. Bull. Am. Phys. Soc. 56, Z26.00010 (2011) and private communications Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Laura H. Greene
    • 1
  • Hamood Z. Arham
    • 1
  • Cassandra R. Hunt
    • 1
  • Wan Kyu Park
    • 1
  1. 1.Center for Emergent Superconductivity Department of Physics and Frederick Seitz Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations