Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 6, pp 2081–2085 | Cite as

Hydrothermal Synthesis of SrFe12O19 and Its Characterization

  • A. Baykal
  • M. S. Toprak
  • Z. Durmus
  • H. Sozeri
Original Paper

Abstract

We have synthesized strontium hexaferrite particles in an alkaline medium using a hydrothermal process at 180 °C. Crystalline phase of samples were determined by XRD and spectroscopic, morphological, and magnetic investigation of the sample were FT-IR, SEM, and TG analysis, respectively. XRD analysis revealed few impurity phases in the as-made powder; upon calcinations, the material is converted to desired hexaferrite phase. As synthesized powder exhibits agglomerates with rather smooth facets, in the form of thick platelets. Upon calcination, all these structures were observed to transfer to rod-like structures. The As calcined sample has high specific saturation magnetization (M s ) values of 65 emu/g that is close to its theoretical value of 74.3 emu/g but the hydrothermally synthesized sample does not. This is in agreement with the observations from XRD analysis where few impurity phases observed in the as-made powder cause a weak magnetic response. Upon calcination, the material is converted to a desired hexaferrite phase with better magnetic properties.

Keywords

Magnetic nanoparticles Strontium hexaferrite Hydrothermal synthesis Hard magnet 

Notes

Acknowledgements

This work is supported by Fatih University under BAP grant No. P50021104-B.

References

  1. 1.
    Hessien, M.M., Rashad, M.M., Hassan, M.S., El-Barawy, K.: J. Alloys Compd. 476, 373 (2009) CrossRefGoogle Scholar
  2. 2.
    Kanagesan, S., Jesurani, S., Velmurugan, R., Prabu, S., Kalaivani, T.: Mater. Res. Bull. 47, 188 (2012) CrossRefGoogle Scholar
  3. 3.
    Van Den Broek, C.A.M., Stuijts, A.L.: Philips Tech. Rev. 37, 157 (1977) Google Scholar
  4. 4.
    Jean, M., Nachbaur, V., Bran, J., Breton, J.M.: J. Alloys Compd. 496, 306 (2010) CrossRefGoogle Scholar
  5. 5.
    Amigo, R., Asenjo, J., Krotenko, E., Torres, F., Tejada, J., Brillas, E.: Chem. Mater. 12, 573 (2000) CrossRefGoogle Scholar
  6. 6.
    Pramanik, N.C., Fujii, T., Nakanishi, M., Takada, J.: Mater. Lett. 59, 468 (2005) CrossRefGoogle Scholar
  7. 7.
    Liu, X., Wang, J., Gan, L.M., Ng, S.C.: J. Magn. Magn. Mater. 195, 452 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    Janasi, S.R., Emura, M., Landgraf, J., Rodrigues, D.J.: IEEE Trans. Magn. 36, 3327 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    Sözeri, H., Küçük, I., Özkan H.: J. Magn. Magn. Mater. 323, 1799 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    Seyyed Ebrahimi, S.A.: Phys. Status Solidi C 1(12), 3284 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    Seyyed Ebrahimi, S.A.: Key Eng. Mater. 280, 465 (2005) CrossRefGoogle Scholar
  12. 12.
    Koohdar, H.R., Seyyed Ebrahimi, S.A., Yourdkhani, A., Dehghan, R., Zajkanika, F.: J. Alloys Compd. 479, 638 (2009) CrossRefGoogle Scholar
  13. 13.
    Le Breton, J.M., Lechevallier, L., Feng, L.W., Harris, R.: J. Magn. Magn. Mater. 2214, 272–276 (2004) Google Scholar
  14. 14.
    Calleja, A., Tijero, E., Martinez, B., Pinol, S., Sandiumenge, F., Obradors, X.: J. Magn. Magn. Mater. 293, 196–197 (1999) Google Scholar
  15. 15.
    Ataie, A., Harris, I.R., Ponton, C.B.: J. Mater. Sci. 30, 1429 (1995) ADSCrossRefGoogle Scholar
  16. 16.
    Kong, S., Zhang, P., Wen, X., Pi, P., Cheng, J., Yang, Z., Hai, J.: Particuology 6, 185 (2008) CrossRefGoogle Scholar
  17. 17.
    Jiang, J., Ai, L.H.: J. Alloys Compd. 502, 488 (2010) CrossRefGoogle Scholar
  18. 18.
    Durmus, Z., Sozeri, H., Toprak, M.S., Baykal, A.: doi: 10.1007/s10948-012-1538-9 (online first)
  19. 19.
    Baykal, A., Durmus, Z., Toprak, M.S., Sozeri, H.: J. Supercond. Nov. Magn. doi: 10.1007/s10948-012-1548-7
  20. 20.
    Unal, B., Durmus, Z., Baykal, A., Toprak, M.S., Sozeri, H., Bozkurt, A.: J. Alloys Compd. 509, 8199 (2011). CrossRefGoogle Scholar
  21. 21.
    Lin, C.H., Shih, Z.W., Chin, T.S., Wang, M.L., Yu, Y.C.: IEEE Trans. Magn. 26, 15 (1990) ADSCrossRefGoogle Scholar
  22. 22.
    Wejrzanowski, T., Pielaszek, R., Opaliniska, A., Matysiak, H., Lojkowski, W., Kurzydlowski, K.J.: Appl. Surf. Sci. 253, 204 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    Pielaszek, R.: Analytical expression for diffraction line profile for polydispersive powders. In: Appl. Crystallography Proceedings of the XIX Conference, Krakow, Poland, p. 43 (2003) Google Scholar
  24. 24.
    Masoudpanah, S.M., Seyyed Ebrahimi, S.A.: J. Magn. Magn. Mater. (2012). doi: 10.1016/j.jmmm.2012.02.109 Google Scholar
  25. 25.
    Haneda, K., Miyakawa, C., Goto, K.: IEEE Trans. Magn. 23, 3134 (1987) ADSCrossRefGoogle Scholar
  26. 26.
    Wang, J.F., Ponton, C.B., Grössinger, R., Harris, I.R.: J. Alloys Compd. 369, 170 (2004) CrossRefGoogle Scholar
  27. 27.
    Ataie, A., Heshmati-Manesh, A.: J. Eur. Ceram. Soc. 21, 1951 (2001) CrossRefGoogle Scholar
  28. 28.
    Stoner, E.C., Wohlfarth, E.P.: Philos. Trans. R. Soc. Lond. A 240, 599 (1948) ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. Baykal
    • 1
  • M. S. Toprak
    • 2
  • Z. Durmus
    • 1
  • H. Sozeri
    • 3
  1. 1.Department of ChemistryFatih University, B. CekmeceIstanbulTurkey
  2. 2.Functional Materials DivisionKTH Royal Institute of TechnologyStockholmSweden
  3. 3.TUBITAK-UMENational Metrology InstituteKocaeliTurkey

Personalised recommendations