Advertisement

Correlation Between Ferromagnetism and Superconductivity at Interfaces of La2/3Ca1/3MnO3/YBa2Cu3O7−δ /La2/3Ca1/3MnO3 Trilayers Grown by dc Sputtering

  • F. Perez
  • E. Baca
  • W. Saldarriaga
  • O. Morán
  • H. Shi
  • D. Lederman
Original Paper

Abstract

In this work, we study the magnetoelectrical properties of La2/3Ca1/3MnO3/YBa2Cu3O7−δ /La2/3Ca1/3MnO3 heterostructures grown by means of high oxygen-pressure dc sputtering onto (001)-oriented SrTiO3 substrates. The test heterostructures are composed of ferromagnetic layers of constant thicknesses (∼280 unit cells, ∼110 nm) and superconducting interlayers with thicknesses ranging between 5 (∼6 nm) and 15 unit cells (∼17 nm). Transport measurements show a strong suppression of the superconducting properties when the thickness of the YBa2Cu3O7−δ interlayer is reduced to a value below 10 unit cells. Magnetic measurements show superconducting transition in junctions with YBa2Cu3O7−δ interlayers with thicknesses larger than ∼15 unit cells. The observed difference in the values of the superconductivity onset when determined by electrical and magnetic measurements might be related with the presence of a spontaneous vortex phase in the temperature range around the superconducting transition.

Keywords

Vortex lattices Flux pinning Flux creep Manganites High-Tc films 

Notes

Acknowledgements

The authors wish to thank the thin films group at the “Universidad del Valle” in Cali-Colombia for the assistance with the preparation of the samples. One of the authors (O.M.) acknowledges the financial support of the German Service of Academic Interchange (DAAD) through the program “Wiedereinladung.”

References

  1. 1.
    Izyumov, Yu.A., Proshin, Yu.N., Khusainov, M.G.: Phys. Usp. 45, 109 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    Buzdin, A.I., Vedyayev, A.V., Ryzhanova, N.V.: Europhys. Lett. 48, 686 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    Demler, E.A., Arnold, G.B., Beasley, M.R.: Phys. Rev. B 55, 15174 (1997) ADSCrossRefGoogle Scholar
  4. 4.
    Velez, M., Martin, J.I., Villegas, J.E., Hoffmann, A., Gonzalez, E.M., Vicent, J.L., Schuller, I.K.: J. Magn. Magn. Mater. 320, 2547 (2008) CrossRefGoogle Scholar
  5. 5.
    Habermeier, H.-U.: J. Phys. Conf. Ser. 108, 01239 (2008) CrossRefGoogle Scholar
  6. 6.
    Ohtomo, A., Hwang, H.Y.: Nature 247, 427 (2004) Google Scholar
  7. 7.
    Chakhalian, J., Freeland, J.W., Srajer, G., Strempfer, J., Khaliullin, G., Cezar, J.C., Charlton, T., Dagliesh, R., Bernhard, C., Cristiani, G., Habermeier, H.-U., Keimer, B.: Nat. Phys. 2, 244 (2006) CrossRefGoogle Scholar
  8. 8.
    Chakhalian, J., Freeland, J.W., Habermeier, H.-U., Cristiani, G., Khaliullin, G., van Veenendaal, M., Keimer, B.: Science 318, 1114 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    Samal, D., Anil Kumar, P.S.: J. Appl. Phys. 108, 123908 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    Saldarriaga, W., Baca, E., Prieto, P., Morán, O., Grube, K., Fuchs, D., Schneider, R.: Physica B 381, 274 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    Iye, Y., Tamegai, T., Tayeka, H., Takei, H.: Jpn. J. Appl. Phys. 26, L1057 (1988) CrossRefGoogle Scholar
  12. 12.
    Pérez, F., Baca, E., Saldarriaga, W., Castro, L.F., Gomez, M.E., Prieto, P., Shi, H., Lederman, D.: J. Appl. Phys. 97, 10B115 (2005) CrossRefGoogle Scholar
  13. 13.
    Ruggiero, S.T., Barbee, T.W. Jr., Beasley, M.R.: Phys. Rev. Lett. 45, 1299 (1980) ADSCrossRefGoogle Scholar
  14. 14.
    Salvato, M., Bobba, F., Calabrese, G., Cirillo, C., Cucolo, A.M., De Santis, A., Vecchione, A., Atanasio, C.: Eur. Phys. J. B 51, 79 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 66, 1125 (1994) ADSCrossRefGoogle Scholar
  16. 16.
    Palstra, T.T.M., Batlogg, B., van Dover, R.B., Schneemeyer, L.F., Waszczak, J.V.: Phys. Rev. B 41, 6621 (1990) ADSCrossRefGoogle Scholar
  17. 17.
    Suzuki, Y., Triscone, J.M., Beasley, M.R., Geballe, T.H.: Phys. Rev. B 52, 6858 (1995) ADSCrossRefGoogle Scholar
  18. 18.
    Fontcuberta, J., Martínez, B., Seffar, A., Piñol, S., García-Muñoz, J.L., Obradors, X.: Phys. Rev. B 41, 1122 (1996) Google Scholar
  19. 19.
    Moran, O., Perez, F., Saldarriaga, W., Gross, K., Baca, E.: J. Appl. Phys. 103, 07F724 (2008) CrossRefGoogle Scholar
  20. 20.
    Peng, L., Cai, C., Changzhao, C., Gao, B., Ying, L., Liu, Z.: Solid State Commun. 148, 545 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    Przyslupski, P., Komissarov, I., Paskowickz, W., Dluzewski, P., Minikayev, R., Sawicki, M.: Phys. Rev. B 69, 134428 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    Brunner, O., Antognazza, L., Triscone, J.-M., Mieville, L., Fischer, Ø.: Phys. Rev. Lett. 67, 1354 (1991) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • F. Perez
    • 1
  • E. Baca
    • 2
  • W. Saldarriaga
    • 3
  • O. Morán
    • 3
  • H. Shi
    • 4
  • D. Lederman
    • 1
  1. 1.Department of PhysicsWest Virginia UniversityMorgantownUSA
  2. 2.Grupo de Ingeniería de Nuevos Materiales, Departamento de FísicaUniversidad del ValleCaliColombia
  3. 3.Laboratorio de Materiales Cerámicos y Vítreos, Departamento de FísicaUniversidad Nacional de Colombia campus MedellínMedellínColombia
  4. 4.Department of Physics and AstronomySonoma State UniversityRohnert ParkUSA

Personalised recommendations