Charge Excitations in Two-Leg Ladders: A tDMRG Approach

  • Luis G. G. V. Dias da Silva
  • G. Alvarez
  • M. S. Summers
  • E. Dagotto
Original Paper


We study the dynamics of holon–doublon pairs in two-leg Hubbard ladders with the time-dependent Density Matrix Renormalization-Group approach. Benchmark results show that the Krylov algorithm is well suited to calculate the time dependence of observables in these systems. Furthermore, we show that the dynamics of the holon–doublon depend strongly on the coupling asymmetry within the ladder, indicating that the ladder geometry plays a role in the decay of these elementary charge excitations.


DMRG Hubbard model Two-leg ladders Excitations 



This work was supported by the Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division, Basic Energy Sciences, US Department of Energy, under contract with UT-Battelle. This research used resources of the National Center for Computational Sciences, as well as the OIC at Oak Ridge National Laboratory. L.G.G.V.D.S. acknowledges support from Brazilian agencies CNPq and FAPESP. E.D. was supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.


  1. 1.
    Al-Hassanieh, K.A., Reboredo, F.A., Feiguin, A.E., Gonzalez, I., Dagotto, E.: Phys. Rev. Lett. 100, 166403 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    Dias da Silva, L.G.G.V., Al-Hassanieh, K.A., Feiguin, A.E., Reboredo, F.A., Dagotto, E.: Phys. Rev. B 81(12), 125113 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    Dagotto, E.: Rev. Mod. Phys. 66, 763 (1994) ADSCrossRefGoogle Scholar
  4. 4.
    White, S.: Phys. Rev. Lett. 69, 2863 (1992) ADSCrossRefGoogle Scholar
  5. 5.
    White, S.: Phys. Rev. B 48, 345 (1993) Google Scholar
  6. 6.
    Troyer, M., Wiese, U.J.: Phys. Rev. Lett. 94, 170201 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    White, S., Feiguin, A.: Phys. Rev. Lett. 93(7) (2004) Google Scholar
  8. 8.
    Daley, A.J., Kollath, C., Schollwöck, U., Vidal, G.: J. Stat. Mech. Theory Exp. 2004(04), P04005 (2004) CrossRefGoogle Scholar
  9. 9.
    Alvarez, G.: Comput. Phys. Commun. 180, 1572 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Alvarez, G., Dias da Silva, L.G.G.V., Ponce, E., Dagotto, E.: Phys. Rev. E 84, 056706 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    Batrouni, G.G., Poilblanc, D. (eds.): Effective Models for Low-Dimensional Strongly Correlated Systems. AIP, Melville (2006). MATHGoogle Scholar
  12. 12.
    Manmana, S.R., Muramatsu, A., Noack, R.M.: In: AIP Conf. Proc. (2005). Google Scholar
  13. 13.
    Dias da Silva, L.G.G.V., Alvarez, G., Dagotto, E. (in preparation) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Luis G. G. V. Dias da Silva
    • 1
  • G. Alvarez
    • 2
  • M. S. Summers
    • 2
  • E. Dagotto
    • 3
    • 4
  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Computer Science & Mathematics Division and Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA
  4. 4.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations