Superconductivity and the Van Hove Scenario

Superconductivity

Abstract

We give a review of the role of the Van Hove singularities in superconductivity. Van Hove singularities (VHs) are a general feature of low-dimensional systems. They appear as divergences of the electronic density of states (DOS). Jacques Friedel and Jacques Labbé were the first to propose this scenario for the A15 compounds. In NbTi, for example, Nb chains give a quasi-1D electronic structure for the d-band, leading to a VHs. They developed this model and explained the high T C and the many structural transformations occurring in these compounds. This model was later applied by Jacques Labbé and Julien Bok to the cuprates and developed by Jacqueline Bouvier and Julien Bok. The high T C superconductors cuprates are quasi-bidimensional (2D) and thus lead to the existence of Van Hove singularities in the band structure. The presence of VHs near the Fermi level in the cuprates is now well established. In this context we show that many physical properties of these materials can be explained, in particular the high critical temperature T C, the anomalous isotope effect, the superconducting gap and its anisotropy, and the marginal Fermi liquid properties, they studied these properties in the optimum and overdoped regime. These compounds present a topological transition for a critical hole doping p≈0.21 hole per CuO2 plane.

Keywords

Superconductivity High TC Van Hove scenario Density of states 

Notes

Acknowledgements

Jacqueline Bouvier personally met Professor Friedel for the first time the day of her thesis defense. He came, invited by one of my researcher friends, and he stayed during the cocktail. She adds: I was very impressed by his long and slim figure and his glittering eyes with strength emerging from him. After this first meeting, we met sometimes in his home to discuss our respective work. He was always very interested and always took into account my own words and capacities. I was very touched by his gentleman behavior regarding me. Until now, we are corresponding to exchange the ideas submitted in our papers. I want to deeply thank him for his intellectual interest in our work and express how I am admiring his lifelong work.

References

  1. 1.
    Labbé, J., Barišić, S., Friedel, J.: Phys. Rev. Lett. 19, 233 (1962) Google Scholar
  2. 2.
    Labbé, J., Friedel, J.: J. Phys. Radium 27, 153 (1966) Google Scholar
  3. 3.
    Labbé, J., Friedel, J.: J. Phys. (Paris) 27, 153 (1966) Google Scholar
  4. 4.
    Labbé, J., Friedel, J.: J. Phys. (Paris) 27, 303 (1966) Google Scholar
  5. 5.
    Labbé, J., Friedel, J.: J. Phys. (Paris) 27, 708 (1966) Google Scholar
  6. 6.
    Labbé, J., Barišić, S., Friedel, J.: Phys. Rev. Lett. 19, 1039 (1967) ADSCrossRefGoogle Scholar
  7. 7.
    Barišić, S., Labbé, J.: J. Phys. Chem. Solids 28, 2477 (1967) ADSCrossRefGoogle Scholar
  8. 8.
    Labbé, J.: Phys. Rev. Lett. 158, 647 (1967) ADSGoogle Scholar
  9. 9.
    Labbé, J.: Phys. Rev. 158, 655 (1967) ADSCrossRefGoogle Scholar
  10. 10.
    Labbé, J.: Phys. Rev. Lett. 172, 451 (1968) ADSGoogle Scholar
  11. 11.
    Friedel, J.: Transition metals. In: Ziman, J.M. (ed.) Physics of Metals I. Electrons. Cambridge University Press, Cambridge (1969) Google Scholar
  12. 12.
    Barišić, S., Labbé, J., Cyrot-Lackmann, F.: J. Phys. (Paris) 30, 955 (1969) Google Scholar
  13. 13.
    Labbé, J., van Reuth, E.C.: Phys. Rev. Lett. 24, 1232 (1970) ADSCrossRefGoogle Scholar
  14. 14.
    Barišić, S., Labbé, J., Friedel, J.: Phys. Rev. Lett. 25, 919 (1970) ADSCrossRefGoogle Scholar
  15. 15.
    Barišić, S.: Phys. Rev. B 5, 932 (1972) ADSCrossRefGoogle Scholar
  16. 16.
    Testardi, L.R., Bateman, T.B., Reed, W.A., Chirba, V.G.: Phys. Rev. Lett. 15, 250 (1965) ADSCrossRefGoogle Scholar
  17. 17.
    Testardi, L.R., Bateman, T.B.: Phys. Rev. 154, 402 (1967) ADSCrossRefGoogle Scholar
  18. 18.
    Bednorz, J.G., Müller, K.A.: Z. Angew. Phys. B 64, 189 (1986) ADSGoogle Scholar
  19. 19.
    Barišić, S., Batistic, I., Friedel, J.: Europhys. Lett. 3, 1231 (1987) ADSCrossRefGoogle Scholar
  20. 20.
    Van Hove, L.: Phys. Rev. 89, 1189 (1953) ADSCrossRefMATHGoogle Scholar
  21. 21.
    Labbé, J., Bok, J.: Europhys. Lett. 3, 1225 (1987) ADSCrossRefGoogle Scholar
  22. 22.
    Bok, J., Bouvier, J.: Van Hove scenario for high T C superconductors. In: Bussmann-Holder, A., Keller, H. (eds.) High T C Superconductors and Related Transition Metal Oxides, pp. 35–41. Springer, Berlin (2007) CrossRefGoogle Scholar
  23. 23.
    Bouvier, J., Bok, J.: Electron–phonon Interaction in the high-T C cuprates in the framework of the Van Hove scenario. Adv. Condens. Matter Phys. 2010, 472636 (2010). doi: 10.1155/2010/472636 Google Scholar
  24. 24.
    Ino, A., Kim, C., Nakamura, M., Yoshida, Y., Mizokawa, T., Fujimori, A., Shen, Z.X., Takeshita, T., Eisaki, H., Uchida, S.: Phys. Rev. B 65, 094504 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    Lee, P.A., Nagaosa, N., Wen, X.-G.: Rev. Mod. Phys. 78, 17 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    Bouvier, J., Bok, J.: Physica C 249, 117 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    Bouvier, J., Bok, J.: Physica C 288, 217 (1997) ADSCrossRefGoogle Scholar
  28. 28.
    Koike, Y., Iwabuchi, Y., Hosoya, S., Kobayashi, N., Fukase, T.: Physica C 159, 105 (1989) ADSCrossRefGoogle Scholar
  29. 29.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957) MathSciNetADSCrossRefMATHGoogle Scholar
  30. 30.
    Morel, P., Anderson, P.W.: Phys. Rev. 125, 1263 (1962) ADSCrossRefGoogle Scholar
  31. 31.
    Cohen, M.L., Anderson, P.W.: In: Douglass, D.H. (ed.) Superconductivity in d and f Band Metals. AIP, New York (1972) Google Scholar
  32. 32.
    Ginzburg, V.: Contemp. Phys. 33, 15 (1992) ADSCrossRefGoogle Scholar
  33. 33.
    Force, L., Bok, J.: Solid State Commun. 85, 975 (1993) ADSCrossRefGoogle Scholar
  34. 34.
    Batlogg, B., Kourouklis, G., Weber, W., Cava, R.J., Jayaraman, A., White, A.E., Short, K.T., Rupp, L.W., Rietman, E.A.: Phys. Rev. Lett. 59, 912 (1987) ADSCrossRefGoogle Scholar
  35. 35.
    Crawford, M.K., Kunchur, M.N., Farneth, W.E., McCarron, E.M. III, Poon, S.J.: Phys. Rev. B 41, 282 (1990) ADSCrossRefGoogle Scholar
  36. 36.
    Keller, H.: In: Müller, K., Bussmann-Holder, A. (eds.) Structure and Bonding, vol. 114, p. 143. Springer, Heidelberg (2005) Google Scholar
  37. 37.
    Tsuei, C.C., Newns, D.M., Chi, C.C., Pattnaik, P.C.: Phys. Rev. Lett. 65, 2724 (1990) ADSCrossRefGoogle Scholar
  38. 38.
    Pattnaik, P.C., Kane, C.L., Newns, D.M., Tsuei, C.C.: Phys. Rev. B 45, 5714 (1992) ADSCrossRefGoogle Scholar
  39. 39.
    Newns, D.M., Tsuei, C.C., Pattnaik, P.C., Lane, C.L.: Comments Condens. Matter Phys. 15, 273 (1992) Google Scholar
  40. 40.
    Hlubina, R., Rice, T.M.: Phys. Rev. B 51, 9253 (1995) ADSCrossRefGoogle Scholar
  41. 41.
    Olson, C.G., Liu, R., Lynch, D.W., List, R.S., Arko, A.J., Veal, B.W., Chang, Y.C., Jiang, P.Z., Paulikas, A.P.: Phys. Rev. B 42, 381 (1990) ADSCrossRefGoogle Scholar
  42. 42.
    Schlesinger, Z., et al.: Phys. Rev. Lett. 67, 2741 (1991) ADSCrossRefGoogle Scholar
  43. 43.
    Kubo, Y., Shimakawa, Y., Manako, T., Igarashi, H.: Phys. Rev. B 43, 7875 (1991) ADSCrossRefGoogle Scholar
  44. 44.
    Matthey, D., Gariglio, S., Giovannini, B., Triscone, J.-M.: Phys. Rev. B 64, 024513 (2001) ADSCrossRefGoogle Scholar
  45. 45.
    Balakirev, F.F., Betts, J.B., Migliori, A., Ono, S., Ando, Y., Boebinger, G.S.: Nature 424, 912 (2003) ADSCrossRefGoogle Scholar
  46. 46.
    Bok, J., Bouvier, J.: Physica C, Supercond. 403, 263 (2004) ADSCrossRefGoogle Scholar
  47. 47.
    Ong, N.P.: Phys. Rev. B 43, 193 (1991) ADSCrossRefGoogle Scholar
  48. 48.
    Williams, G.V.M., Tallon, J.L., Haines, E.M., Michalak, R., Dupree, R.: Phys. Rev. Lett. 78, 721 (1997) ADSCrossRefGoogle Scholar
  49. 49.
    Cooper, J.R., Loram, J.W.: J. Phys. I Fr. 6, 2237 (1996) CrossRefGoogle Scholar
  50. 50.
    Abrikosov, A.A.: Physica C 244, 243 (1995) ADSCrossRefGoogle Scholar
  51. 51.
    Tsuei, C.C., Kirtley, J.R., Hammerl, G., Mannhart, J., Raffy, H., Li, Z.Z.: Phys. Rev. Lett. 93, 187004 (2004) ADSCrossRefGoogle Scholar
  52. 52.
    Bouvier, J., Bok, J.: J. Supercond. 10, 673 (1997) ADSCrossRefGoogle Scholar
  53. 53.
    Kyomen, T., Oguni, M., Itoh, M., Yu, J.D.: Phys. Rev. B 60, 6821 (1999) ADSCrossRefGoogle Scholar
  54. 54.
    Egami, T.: Essential role of the lattice in the mechanism of high temperature superconductivity. In: Bussmann-Holder, A., Keller, H. (eds.) High T C Superconductors and Related Transition Metal Oxides, pp. 103–129. Springer, Berlin (2007) CrossRefGoogle Scholar
  55. 55.
    Toby, B.H., Egami, T., Jorgensen, J.D., Subrmanian, M.A.: Phys. Rev. Lett. 64, 2414 (1990) ADSCrossRefGoogle Scholar
  56. 56.
    Oyanagi, H.: Lattice effects in high temperature superconducting cuprates revealed by X-ray absorption spectroscopy. In: Bussmann-Holder, A., Keller, H. (eds.) High T C Superconductors and Related Transition Metal Oxides, pp. 253–258. Springer, Berlin (2007) CrossRefGoogle Scholar
  57. 57.
    Lee, J., Fujita, K., McElroy, K., Slezak, J.A., Wang, M., Aiura, Y., Bando, H., Ishikado, M., Masui, T., Zhu, J.-X., Balatsky, A.V., Eisaki, H., Uchida, S., Davis, J.C.: Nature 442, 546 (2006) ADSCrossRefGoogle Scholar
  58. 58.
    Graf, J., d’Astuto, M., Jozwiak, C., Garcia, D.R., Saini, N.L., Krisch, M., Ikeuchi, K., Baron, A.Q.R., Eisaki, H., Lanzaral, A.: Phys. Rev. Lett. 100, 227002 (2008) ADSCrossRefGoogle Scholar
  59. 59.
    Deutscher, G., de Gennes, P.G.: C. R. Phys. 8, 937 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.ESPCI Paris TechParis Cedex 05France

Personalised recommendations