Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 2, pp 319–323 | Cite as

Charge Disproportionation and Superconductivity in Tl- and In-doped Lead Telluride

Original Paper

Abstract

The “negative-U model” is analyzed and applied to Tl- and In-doped lead telluride, Pb1−xTlxTe, and Pb1−xInxTe, respectively. The former, but not the latter, is superconducting (Tc<1.5 K) in a certain concentration range (xc>0.003). At very low concentrations, carriers are created in the valence band and the conductivity is metallic, of the ordinary kind. Matsushita et al. and Erickson et al. explain this as due to disproportionation 2Tl2+→Tl+ and Tl3+. The latter authors are of the opinion that indium also disproportionates in the same way as thallium. If this would be the case, it would be hard to explain the absence of superconductivity at indium doping. In this paper it is shown that In2+ does not disproportionate under the given circumstances. The Hubbard model, extended and generalized, is therefore consistent with all experimental results.

Keywords

PbTe Superconductivity Madelung Thallium Hubbard-U 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, P.W.: Phys. Rev. Lett. 14, 953–955 (1975) ADSCrossRefGoogle Scholar
  2. 2.
    Hush, N.S.: Progr. Inorg. Chem. 8, 391–444 (1967) CrossRefGoogle Scholar
  3. 3.
    Robin, M.B., Day, P.: Adv. Inorg. Chem. Radiochem. 10, 247–422 (1967) CrossRefGoogle Scholar
  4. 4.
    Varma, C.M.: Phys. Rev. Lett. 61, 2713–2716 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    Ketelaar, J.E., t’Hart, W.H., Morel, M., Polder, D.: Z. Kristallogr. A 101, 396 (1939) Google Scholar
  6. 6.
    Wiberg, E., Wiberg, N., Holleman, A.F.: Inorganic Chemistry, 34th edn., pp. 1037–1038. Academic Press, London (2001) 1884 pp Google Scholar
  7. 7.
    Marcus, R.A.: Annu. Rev. Phys. Chem. 15, 155 (1964) ADSCrossRefGoogle Scholar
  8. 8.
    Holstein, T.: Ann. Phys. 8, 325–342 (1959) ADSMATHCrossRefGoogle Scholar
  9. 9.
    Holstein, T.: Ann. Phys. 8, 343–389 (1959). Reprinted Ann. Phys. 281, 706–724 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    Larsson, S.: Chem. Phys. 326, 115–122 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    Chernik, I.A., Lykov, S.N.: Sov. Phys., Solid State. 23, 1724, 2062 (1981) Google Scholar
  12. 12.
    Drabkin, I.A., Kvantov, M.A., Kompaniets, V.V., Kostikov, Y.P.: Sov. Phys. Semicond. 16, 815 (1982) Google Scholar
  13. 13.
    Nemov, S.A., Ravich, Y.I.: Phys. Usp. 41, 735–759 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    Shelankov, A.L.: Solid State Commun. 62, 327–330 (1987) ADSCrossRefGoogle Scholar
  15. 15.
    Matsushita, Y., Bluhm, H., Geballe, T.H., Fisher, I.R.: Phys. Rev. Lett. 94, 157002 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    Matsushita, Y., Wianecki, P.A., Sommer, A.T., Geballe, T.H., Fisher, I.R.: Phys. Rev. B 74, 134512 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    Erickson, A.S., Breznay, N.P., Nowadnick, E.A., Geballe, T.H., Fisher, I.R.: Phys. Rev. B 81, 134521 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    Erickson, A.S., Geballe, T.H., Fisher, I.R., Wu, Y.Q., Kramer, M.J.: Adv. Cond. Matter Phys. arXiv:1009.0090 [cond-mat.supr-con] (2010)
  19. 19.
    Hase, I., Yanagizawa, T.: Physica C 445–448, 61–64 (2006) CrossRefGoogle Scholar
  20. 20.
    Hase, I., Yanagizawa, T.: J. Phys. Conf. Ser. 108, 012011 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    Hase, I., Yanagizawa, T.: Phys. Rev. B 76, 174103 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    Cooper, L.N.: Phys. Rev. 104, 1189–1190 (1956) ADSMATHCrossRefGoogle Scholar
  23. 23.
    Murakami, H., Hattori, W., Aoki, R.: Physica C 269, 83–91 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    Akimov, B.A., Dmitriev, A.V., Ryabova, L.I., Khoklov, D.R.: Phys. Status Solidi A 137, 9 (1993) ADSCrossRefGoogle Scholar
  25. 25.
    Volkov, B.A., Ryabova, I.I., Khokhlov, D.R.: Phys. Usp. 45, 819–846 (2002) ADSCrossRefGoogle Scholar
  26. 26.
    Zasavitsky, E.A.: Mold. J. Phys. Sci. 4(3), 326–331 (2005) Google Scholar
  27. 27.
    Zasavitsky, E.A.: Mold. J. Phys. Sci. 5(2), 221–224 (2006) Google Scholar
  28. 28.
    Kantser, V.G., Sidorenko, A.S., Zasavitsky, E.A.: Rev. Mil. 1, 72 (2009) 2/2009, Chişinău Google Scholar
  29. 29.
    Schwartz, H.A., Dodson, R.W.: J. Phys. Chem. 88, 3643–3647 (1984) CrossRefGoogle Scholar
  30. 30.
    Wagman, D.D., Evans, W.H., Parker, V.B., Schrumm, R.H., Halow, I., Balley, S.M., Churney, K.L., Nuttal, R.L.: The NBS tables of chemical thermodynamical properties. J. Phys. Chem. Ref. Data 11, Suppl. 2, American Institute of Physics, New York (1982) Google Scholar
  31. 31.
    Larsson, S.: Adv. Cond. Matter Phys. 627452 (2010). doi:10.1155/2010/627452
  32. 32.
    Ravich, Y.I., Nemov, S.A.: Semiconductors 36, 1 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    Kondo, J.: Prog. Theor. Phys. 32, 37–49 (1964) ADSCrossRefGoogle Scholar
  34. 34.
    Dzero, M., Schmalian, J.: Phys. Rev. Lett. 94, 157003 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryChalmers University of TechnologyGöteborgSweden

Personalised recommendations