Skip to main content
Log in

Magnetoresistance Intensification of Fe3O4/BaTiO3 Nanoparticle-Composite-Sinter Produced by Low Temperature Heat Treatment

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We have presented the study on the magnetoresistance intensification of (Fe3O4)1−X /(BaTiO3) X nanoparticle-composite-sinter (NPCS) produced by low temperature heat treatment. The average sizes of α-Fe2O3 and BaTiO3 nanoparticles are 30 nm and 40 nm, respectively. They were homogeneously mixed together and were sintered at 500 °C for 3 hours in the atmosphere of Ar(90%)/H2(10%). X of (Fe3O4)1−X /(BaTiO3) X NPCS was varied between 0 and 0.75. With increasing X, the electrical resistivity (ER) increases and shows the Mott’s variable-range-hopping (VRH) conduction behavior in a wide temperature region. The negative differential magnetoresistivity (ND-MR) is observed for all samples in a moderately high magnetic field region. In a low magnetic field region, the MR shows a large hysteresis. As X increases, the variation of the MR is intensified. We consider that the total number of network channels of the electrical conduction is reduced and the spin scattering is consequently intensified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Georgescu, M., Klokkenburg, M., Erne, B.H., Liljeroth, P., Vanmaekelbergh, D., van Emmichoven, Z.P.A.: Phys. Rev. B 73, 184415 (2006)

    Article  ADS  Google Scholar 

  2. Lima, E. Jr., Brandl, A.L., Arelaro, A.D., Goya, G.F.: J. Appl. Phys. 99, 083908 (2006)

    Article  ADS  Google Scholar 

  3. Pei, W., Kumada, H., Natusme, T., Saito, H., Ishio, S.: J. Magn. Magn. Mater. 310, 2375 (2007)

    Article  ADS  Google Scholar 

  4. Brahma, P., Dutta, S., Dutta, D., Banerjee, S., Ghosh, A., Chakravorty, D.: J. Magn. Magn. Mater. 321, 1045 (2009)

    Article  ADS  Google Scholar 

  5. Taub, N., Tsukernik, A., Markovich, G.: J. Magn. Magn. Mater. 321, 1933 (2009)

    Article  ADS  Google Scholar 

  6. Verwey, E.J.W.: Nature 144, 327 (1939)

    Article  ADS  Google Scholar 

  7. Mott, N.F.: J. Non-Cryst. Solids 1, 1 (1968)

    Article  ADS  Google Scholar 

  8. Baranovskii, S.: Charge transport in disordered materials. In: Capper, P., Kasap, S. (eds.) Springer Handbook of Electronic and Photonic Materials, p. 161 (2006)

    Chapter  Google Scholar 

  9. Shklovskii, B.I., Efros, A.L.: Electronic Properties of Doped Semiconductors. Springer Series in Solid State Science, vol. 45, p. 202 (1984)

    Google Scholar 

  10. Ziese, M., Blythe, H.J.: J. Phys., Condens. Matter 12, 13 (2000)

    Article  ADS  Google Scholar 

  11. Coey, J.M.D., Berkowitz, A.E., Balcells, L.I., Putris, F.F., Parker, F.T.: Appl. Phys. Lett. 72, 734 (1998)

    Article  ADS  Google Scholar 

  12. Gridin, V.V., Hearne, G.R.: Phys. Rev. 23, 15518 (1975)

    Google Scholar 

  13. Butler, R.F., Banerjee, S.K.: Rock Magnetism: Fundamentals and Frontiers. Cambridge Studies in Magnetism. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  14. Dunlop, D.J.: Phys. Earth Planet. Inter. 26, 1 (1981)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kobori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobori, H., Uzimoto, K., Hoshino, A. et al. Magnetoresistance Intensification of Fe3O4/BaTiO3 Nanoparticle-Composite-Sinter Produced by Low Temperature Heat Treatment. J Supercond Nov Magn 25, 2809–2812 (2012). https://doi.org/10.1007/s10948-011-1271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-011-1271-9

Keywords

Navigation