Advertisement

The Effectiveness of Pulsed-Field Magnetization with Respect to Different Performance Bulk Superconductors

  • Z. DengEmail author
  • M. Miki
  • B. Felder
  • K. Tsuzuki
  • N. Shinohara
  • R. Taguchi
  • K. Suzuki
  • M. Izumi
Original Paper

Abstract

Pulsed-field magnetization (PFM) is one of the practical activation techniques for bulk applications, especially as an inexpensive, small-volume, and mobile experimental setup. To utilize the method, its effectiveness to excite the bulk superconductors was examined by four samples with different trapped-flux performance as representatives. The PFM experiments were conducted with a pair of vortex-type copper coils at liquid nitrogen temperature (77 K). The utmost trapped-flux performance of the four samples was obtained by a multi-PFM method with progressively increased applied fields. By comparison with their trapped-flux results of static field-cooling magnetization (FCM), the effectiveness of PFM according to different performance bulk superconductors was analyzed. It was found that with the improvement of the bulk performance, the PFM results start to deviate from the FCM ones more and more, indicating a harder tendency to excite the bulk samples by the PFM method. The possible explanations from heat generation during the pulse and some suggestions to the improvement of the PFM process for practical applications are discussed.

Keywords

Bulk high temperature superconductors Pulsed-field magnetization Field-cooling magnetization Trapped magnetic flux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nariki, S., Sakai, N., Murakami, M.: Supercond. Sci. Technol. 18, S126 (2005) CrossRefADSGoogle Scholar
  2. 2.
    Gruss, S., et al.: Appl. Phys. Lett. 79, 3131 (2001) CrossRefADSGoogle Scholar
  3. 3.
    Tomita, M., Murakami, M.: Nature 421, 517 (2003) CrossRefADSGoogle Scholar
  4. 4.
    Oka, T., et al.: Physica C 426–431, 794 (2005) CrossRefGoogle Scholar
  5. 5.
    Bean, C.P.: Phys. Rev. Lett. 8, 250 (1962) CrossRefzbMATHADSGoogle Scholar
  6. 6.
    Itoh, Y., Yanagi, Y., Mizutani, U.: J. Appl. Phys. 82, 5600 (1997) CrossRefADSGoogle Scholar
  7. 7.
    Itoh, Y., Mizutani, U.: Jpn. J. Appl. Phys. 35, 2114 (1996) CrossRefADSGoogle Scholar
  8. 8.
    Sander, M., et al.: Supercond. Sci. Technol. 13, 841 (2000) CrossRefADSGoogle Scholar
  9. 9.
    Surzhenko, A.B., et al.: Supercond. Sci. Technol. 14, 770 (2001) CrossRefADSGoogle Scholar
  10. 10.
    Fujishiro, H., et al.: Physica C 445–448, 334 (2006) CrossRefGoogle Scholar
  11. 11.
    Oka, T.: Physica C 463–465, 7 (2007) CrossRefGoogle Scholar
  12. 12.
    Coombs, T.A., et al.: Supercond. Sci. Technol. 21, 034001 (2008) CrossRefADSGoogle Scholar
  13. 13.
    Song, H.H., et al.: Physica C 420, 51 (2005) CrossRefADSGoogle Scholar
  14. 14.
    Fujishiro, H., et al.: Supercond. Sci. Technol. 20, 1009 (2007) CrossRefADSGoogle Scholar
  15. 15.
    Yokoyama, K., et al.: Physica C 426–431, 671 (2005) CrossRefGoogle Scholar
  16. 16.
    Deng, Z., et al.: IEEE Trans. Appl. Supercond. 21, 1180 (2011) CrossRefADSGoogle Scholar
  17. 17.
    Ida, T., et al.: Physica C 412–414, 638 (2004) CrossRefGoogle Scholar
  18. 18.
    Morita, E., et al.: Supercond. Sci. Technol. 19, 1259 (2006) CrossRefADSGoogle Scholar
  19. 19.
    International Electrotechnical Commission (IEC): IEC 61788-9 (2005) Google Scholar
  20. 20.
    Mizutani, U., et al.: Appl. Supercond. 6, 235 (1998) CrossRefGoogle Scholar
  21. 21.
    Shams, G.A., Cochrane, J.W., Russell, G.J.: Physica C 356, 176 (2001) CrossRefADSGoogle Scholar
  22. 22.
    Fujishiro, H., et al.: Supercond. Sci. Technol. 23, 025013 (2010) CrossRefADSGoogle Scholar
  23. 23.
    Fujishiro, H., et al.: Supercond. Sci. Technol. 22, 095006 (2009) CrossRefADSGoogle Scholar
  24. 24.
    Fujishiro, H., Naito, T.: Supercond. Sci. Technol. 23, 105021 (2010) CrossRefADSGoogle Scholar
  25. 25.
    Ida, T., et al.: J. Phys. Conf. Ser. 97, 012292 (2008) CrossRefADSGoogle Scholar
  26. 26.
    Kimura, Y., et al.: Physica C 445–448, 408 (2006) CrossRefGoogle Scholar
  27. 27.
    Fujimoto, H.: Supercond. Sci. Technol. 16, 1115 (2003) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Z. Deng
    • 1
    • 2
    Email author
  • M. Miki
    • 1
  • B. Felder
    • 1
  • K. Tsuzuki
    • 1
  • N. Shinohara
    • 1
  • R. Taguchi
    • 1
  • K. Suzuki
    • 1
  • M. Izumi
    • 1
  1. 1.Laboratory of Applied Physics, Department of Marine Electronics and Mechanical EngineeringTokyo University of Marine Science and TechnologyTokyoJapan
  2. 2.Laboratory of Applied Physics, Department of Marine Electronics and Mechanical EngineeringTokyo University of Marine Science and TechnologyTokyoJapan

Personalised recommendations