Study of Microstructure and Magnetic Properties of SrM Hexaferrites with Neodymium Oxide

  • T. J. Pérez-Juache
  • I. Betancourt
  • S. A. Palomares-Sánchez
  • M. Mirabal García
  • J. A. Matutes-Aquino
  • A. L. Guerrero-Serrano
Original Paper

Abstract

In this work, we report a systematic study on the microstructure and magnetic properties of isotropic M-type SrNdxFe12−xO19 hexaferrites (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5) obtained by conventional ceramic process. According to DRX analysis, a solid solution is formed for Nd contents up to x=0.1, while a composite Sr(NdFe)12O19/SrFeO3 microstructure results for x>0.1. Interesting combinations of hard magnetic properties were obtained for the whole compositional series including increasing coercivity values (up to 329 kA/m for x=0.5) with increasing Nd concentration, together with high Curie temperatures (around 731 K). Results are interpreted in terms of the Nd incorporation into the unit cell as well as within the frame of the nucleation controlled mechanism as the coercivity source for this kind of materials.

Keywords

Hard magnetic materials Sr-hexaferrites Nucleation mechanism 

References

  1. 1.
    Kojima, H.: In: Wohlfarth, E.P. (ed.) Ferromagnetic Materials, vol. 3, pp. 305–391. North-Holland, Amsterdam (1982) Google Scholar
  2. 2.
    Buschow, K.H.J.: Magnetism and processing of permanent magnets materials. In: Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, vol. 10. Elsevier, Amsterdam (1997) Google Scholar
  3. 3.
    Betancourt, I., Davies, H.A.: J. Eng. Mater. Technol. 1, 53 (2009) Google Scholar
  4. 4.
    Skomski, R., Coey, J.M.D.: Permanent Magnetism. Taylor & Francis, New York (1999) Google Scholar
  5. 5.
    Lechevallier, L., Le Breton, J.M., Morel, A., Tenaud, P.: J. Phys., Condens. Matter 20, 175203 (2008) (9 pp) ADSCrossRefGoogle Scholar
  6. 6.
    Nga, T.T.V., Duong, N.P., Hien, T.D.: J. Alloys Compd. 475, 55–59 (2009) CrossRefGoogle Scholar
  7. 7.
    Wang, J.F., Ponton, C.B., Harris, I.R.: J. Magn. Magn. Mater. 298, 122–131 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    Jaya, S. Mathi, Jagadish, R., Rao, R.S., Asokamani, R.: Phys. Rev. B 43, 13274 (1991) ADSCrossRefGoogle Scholar
  9. 9.
    Zhao, Y.M., Zhou, P.F.: J. Magn. Magn. Mater. 381, 214 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    Kronmuller, H., Manfred, F.: Micromagnetism and Microstructure of Ferromagnetic Solids. Cambridge University Press, Cambridge (2003) Google Scholar
  11. 11.
    Stoner, E.C., Wohlfarth, E.P.: Philos. Trans. R. Soc. 240, 599 (1948) ADSMATHCrossRefGoogle Scholar
  12. 12.
    Henkel, O.: Phys. Status Solidi 7, 919 (1964) CrossRefGoogle Scholar
  13. 13.
    Garcia-Otero, J., Porto, M., Rivas, J.: J. Appl. Phys. 87, 73–76 (2000) CrossRefGoogle Scholar
  14. 14.
    Liu, W., Liu, Y., Skomski, R., Sellmyer, D.J.: In: Liu, Y., Sellmyer, D.J., Shindo, D. (eds.) Handbook of Advanced Magnetic Materials, p. 226. Tsinghua University Press/Springer, New York/Beijing (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • T. J. Pérez-Juache
    • 1
  • I. Betancourt
    • 2
  • S. A. Palomares-Sánchez
    • 1
  • M. Mirabal García
    • 3
  • J. A. Matutes-Aquino
    • 4
  • A. L. Guerrero-Serrano
    • 4
  1. 1.Facultad de CienciasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  3. 3.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  4. 4.Centro de Investigación en Materiales AvanzadosChihuahuaMéxico

Personalised recommendations