Journal of Superconductivity and Novel Magnetism

, Volume 24, Issue 6, pp 1997–2011 | Cite as

Spin-vortex Superconductivity

  • Hiroyasu KoizumiEmail author
Open Access
Original Paper


We present a theory of superconductivity based on the theoretical prediction that a macroscopic persistent current is generated by spin-vortices. It explains the origin of the phase variable θ that is canonical conjugate to the superfluid density as a Berry phase arising from the spin-vortex formation. This superconductivity does not require Cooper-pairs as charge carriers, thus, is not directly related to the standard theory based on the BCS one; however, it exhibits the flux quantization in the unit Φ 0=hc/2|e|, where h is Planck’s constant, c the speed of light, and e the electron charge; and the AC Josephson frequency, f J=2|e|V/h, where V is the voltage of the battery connected to the superconductor–insulator–superconductor junction. In due course, it is found that the standard derivation of the AC Josephson frequency misses a term arising from the flow of particles through the leads connected to the junction. If this contribution is included, the observed f J indicates that the phase θ is a variable conjugate to the number density of charge e carriers instead of the currently accepted charge 2e carriers. We propose an experiment that discriminates whether it is e or 2e. If the above claim is verified, it means that the BCS theory cannot predict whether a particular compound is a superconductor or not since it does not explain the origin of θ. A connection between the present mechanism and the BCS mechanism is discussed; the fact that the BCS theory gives an excellent estimate of T c is attributed to the fact that it predicts the temperature at which spin-vortices become long-lived due to the energy gap formation; since the stabilization by the electron-pair formation is compatible with the present mechanism, asymmetries observed in the even and odd number of electron systems are preserved. The most notable difference is that the persistent current generation is formulated in a strictly particle-number-conserving manner. Thus, it does not violate the superselection rule for the total charge.


Phase of the superconducting order parameter Spin-vortices Berry phase Josephson effect Cuprates Loop currents Magnetic excitations 


  1. 1.
    Onnes, H.K.: Leiden Commun. 120b, 122b, 124c (1911) Google Scholar
  2. 2.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    London, F.: Nature 141, 543 (1938) ADSCrossRefGoogle Scholar
  4. 4.
    Penrose, O., Onsager, L.: Phys. Rev. 104, 576 (1956) ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Ginzburg, V.L., Landau, L.D.: Zh. Eksp. Theor. Fiz. 20, 1064 (1950) Google Scholar
  6. 6.
    Anderson, P.W.: Rev. Mod. Phys. 38, 298 (1966) ADSCrossRefGoogle Scholar
  7. 7.
    Josephson, B.D.: Phys. Lett. 1, 251 (1962) ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Anderson, P.W., Rowell, J.M.: Phys. Rev. Lett. 10, 230 (1963) ADSCrossRefGoogle Scholar
  9. 9.
    Deaver, B.S. Jr., Fairbank, W.M.: Phys. Rev. Lett. 7, 43 (1961) ADSCrossRefGoogle Scholar
  10. 10.
    Shapiro, S.: Phys. Rev. Lett. 11, 80 (1963) ADSCrossRefGoogle Scholar
  11. 11.
    Leggett, A.J.: Rev. Mod. Phys. 73, 307 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    Wick, G.C., Wightman, A.S., Wigner, P.E.: Phys. Rev. 88, 101 (1952) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Peierls, R.: J. Phys. A, Math. Gen. 24, 5273 (1991) ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Leggett, A.J.: Quantum Liquids. Oxford Univ. Press, Oxford (2006) CrossRefGoogle Scholar
  15. 15.
    Koizumi, H.: J. Phys. Soc. Jpn. 77, 034712 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    Koizumi, H.: J. Phys. Chem. A 113, 3997 (2009) CrossRefGoogle Scholar
  17. 17.
    Koizumi, H.: J. Phys. A 43, 354009 (2010) CrossRefMathSciNetGoogle Scholar
  18. 18.
    London, F.: Superfluids, vol. 1. Dover, New York (1961) Google Scholar
  19. 19.
    Anderson, P.W.: Phys. Rev. 110, 827 (1958) ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hirsch, J.E.: Phys. Rev. B 55, 9007 (1997) ADSCrossRefGoogle Scholar
  21. 21.
    He, R.-H., Tanaka, K., Mo, K.-S., Sasagawa, T., Fujita, M., Adachi, T., Mannella, N., Yamada, K., Koike, Y., Hussain, Z., Shen, Z.-X.: Nat. Phys. 5, 119 (2009) CrossRefGoogle Scholar
  22. 22.
    Xia, J., Schemm, E., Deutscher, G., Kivelson, S.A., Bonn, D.A., Hardy, W.H., Liang, R., Siemons, W., Koster, G., Fejer, M.M., Kapitulnik, A.: Phys. Rev. Lett. 100, 127002 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    Kapitulnik, A., Xia, J., Schemm, E., Palevski, A.: New J. Phys. 11, 055060 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    Li, Y., Balédent, V., Yu, G., Barišić, N., Hradil, K., Mole, R.A., Sidis, Y., Steffens, P., Zhao, X., Bourges, P., Greven, M.: Nature 468, 283 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    Anderson, P.W.: Basic Notions of Condensed Matter Physics. Benjamin/Cummings, Menlo Park (1984) Google Scholar
  26. 26.
    Koizumi, H.: J. Phys. Soc. Jpn. 77, 104704 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    Slater, J.C.: Phys. Rev. 82, 538 (1951) ADSCrossRefGoogle Scholar
  28. 28.
    Jaklevic, R.C., Lambe, J., Mercereau, J.E., Silver, A.H.: Phys. Rev. 140, A1628 (1965) ADSCrossRefGoogle Scholar
  29. 29.
    Wollman, D.A., van Harlingen, D.J., Giapintzakis, J., Ginsberg, D.M.: Phys. Rev. Lett. 74, 797 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    Kerman, A.K., Koonin, S.E.: Ann. Phys. 100, 332 (1976) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964) ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    Bouchiat, V., Vion, D., Joyez, P., Esteve, D., Devoret, M.H.: Phys. Scr. T 76, 165 (1998) ADSCrossRefGoogle Scholar
  33. 33.
    Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.H.: Science 296, 886 (2002) ADSCrossRefGoogle Scholar
  34. 34.
    Longuet-Higgins, H.C., Öpik, U., Pryce, M.H.L., Sack, R.A.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 244, 1 (1958) ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Herzberg, G., Longuet-Higgins, H.C.: Discuss. Faraday Soc. 35, 77 (1963) CrossRefGoogle Scholar
  36. 36.
    O’Brien, M.C.M.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 281, 323 (1964) ADSCrossRefGoogle Scholar
  37. 37.
    Wu, Y.-S.M., Kupperman, A., Lepetit, B.: Chem. Phys. Lett. 186, 319 (1991) ADSCrossRefGoogle Scholar
  38. 38.
    von Busch, H., Dev, V., Eckel, H.-A., Kasahara, S., Wang, J., Demtröder, W., Sebald, P., Meyer, W.: Phys. Rev. Lett. 81, 4584 (1998) ADSCrossRefGoogle Scholar
  39. 39.
    Mori, T., Nicol, E.J., Shiizuka, S., Kuniyasu, K., Nojima, T., Toyota, N., Carbotte, J.P.: Phys. Rev. B 77, 174515 (2008) ADSCrossRefGoogle Scholar
  40. 40.
    Hayden, S.M., Mook, H.A., Dai, P., Perring, T.G., Doğan, F.: Nature 429, 531 (2004) ADSCrossRefGoogle Scholar
  41. 41.
    Tranquada, J.M., Woo, H., Perring, T.G., Goka, H., Gu, G.D., Xu, G., Fujita, M., Yamada, K.: Nature 429, 534 (2004) ADSCrossRefGoogle Scholar
  42. 42.
    Xu, G., Gu, G.D., Hücker, M., Fauqué, B., Perring, T.G., Regnault, L.P., Tranquada, J.M.: Nat. Phys. 5, 642 (2009) CrossRefGoogle Scholar
  43. 43.
    Zhang, C.J., Oyanagi, H.: Phys. Rev. B 79, 094521 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    Miyaki, S., Makoshi, K., Koizumi, H.: J. Phys. Soc. Jpn. 77, 034702 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    LeBoeuf, D., Doiron-Leyraud, N., Levallois, J., Daou, R., Bonnemaison, J.-B., Hussey, N.E., Balicas, L., Ramshaw, B.J., Liang, R., Bonn, D.A., Hardy, W.N., Adachi, S., Proust, C., Taillerfer, L.: Nature 450, 533 (2007) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Institute of Materials ScienceUniversity of TsukubaTsukubaJapan

Personalised recommendations