Tailoring of Magnetic Properties of Magnetostatically-Coupled Glass-Covered Magnetic Microwires

  • V. Rodionova
  • M. Ipatov
  • M. Ilyn
  • V. Zhukova
  • N. Perov
  • J. Gonzalez
  • A. Zhukov
Original Paper


We report on tailoring of magnetic properties of Fe- and Co-rich microwires through magnetostatic coupling among them. We studied hysteresis loops of the arrays containing different number of the Co67Fe3.9Ni1.5B11.5Si14.5M0.6 and Fe74B13Si11C2 amorphous microwires. Fe74B13Si11C2 microwires have rectangular hysteresis loop, while Co67Fe3.9Ni1.5B11.5Si14.5M0.6 with vanishing magnetostriction constant posses inclined hysteresis loop with low coercivity. The presence of neighboring microwire (Fe either Co-based) significantly modifies hysteresis loop of whole microwire array. In a microwire array containing Fe-based microwires, we observed splitting of the initially rectangular hysteresis loop with a number of Barkhausen jumps correlated with number of Fe-rich microwires. In Co–Co arrays, we observed a change of inclination of overall hysteresis loop, and consequently magnetic anisotropy field under influence of the additional of Co-based microwire. In the case of mixed arrays containing Fe and Co-rich microwires, we were able to obtain irregular hysteresis loops with unusual shape. In this case, considerable increase of harmonics has been observed. Magnetic field amplitude and frequency affect the behavior of all studied arrays. Increasing the amplitude the shape of hysteresis loop of microwire array containing Fe-based microwires transforms from multi-step to single above certain magnetic field amplitude. In the array with Co-based microwires, we observe a change of coercivity. Observed dependences have been attributed by us to the magnetostatic interaction between the microwires with different magnetic domain structure. Together with the conventional method, such as thermal treatment, designing of arrays containing different types of microwires can serve for tailoring of their magnetic properties.


Microwire Glass-covered microwire Magnetostatic coupling Stray fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jiles, D.C.: Acta Mater. 51, 5907 (2003) CrossRefGoogle Scholar
  2. 2.
    Zhukov, A., Zhukova, V.: Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure. Nova Science Publishers, Hauppauge (2009), 162 p. ISBN: 978-1-60741-770-5 Google Scholar
  3. 3.
    Chiriac, H., Ovari, T.A.: Prog. Mater. Sci. 40, 333 (1996) CrossRefGoogle Scholar
  4. 4.
    Zhukov, A., Ipatov, M., Zhukova, V., García, C., Gonzalez, J., Blanco, J.M.: Phys. Status. Solidi (A) 205, 1367 (2008) CrossRefADSGoogle Scholar
  5. 5.
    Zhukov, A., Vázquez, M., Velázquez, J., Chiriac, H., Larin, V.: J. Magn. Magn. Mater. 151, 132 (1995) CrossRefADSGoogle Scholar
  6. 6.
    Pirota, K., Hernandez-Velez, M., Navas, D., Zhukov, A., Vázquez, M.: Adv. Funct. Mater. 14, 266 (2004) CrossRefGoogle Scholar
  7. 7.
    Chizhik, A., Zhukov, A., Blanco, J.M., Gonzalez: J. Non-Cryst. Solids 287, 374 (2001) CrossRefADSGoogle Scholar
  8. 8.
    Chizhik, A., Zhukov, A., Blanco, J.M., Szymczak, R., Gonzalez, J.: J. Magn. Magn. Mater. 249/1-2, 99 (2002) CrossRefADSGoogle Scholar
  9. 9.
    Sampaio, L.C., Sinnecker, E.H.C.P., Cernicchiaro, G.R.C., Knobel, M., Vázquez, M., Velázquez, J.: Phys. Rev. B 61, 8976 (2006) CrossRefADSGoogle Scholar
  10. 10.
    Sinnecker, J.P., de Araujo, A.E.P., Piccin, R., Knobel, M., Vázquez, M.: J. Magn. Magn. Mater. 295, 121 (2005) CrossRefADSGoogle Scholar
  11. 11.
    Piccin, R., Laroze, D., Knobel, M., Vargas, P., Vazquez, M.: EPL 78, 67004 (2007) CrossRefADSGoogle Scholar
  12. 12.
    Knobel, M., Sampaio, L.C., Sinnecker, E.H.C.P., Vargas, P., Altbir, D.: J. Magn. Magn. Mater. 249(1–2), 60 (2002) CrossRefADSGoogle Scholar
  13. 13.
    Chizhik, A., Gonzalez, J., Zhukov, A., Blanco, J.M.: J. Phys. D, Appl. Phys. 36, 1058–1061 (2003) CrossRefADSGoogle Scholar
  14. 14.
    Zhukov, A., Gonzalez, J., Zhukova, V.: J. Magn. Magn., Mater. 294, 165 (2005) CrossRefADSGoogle Scholar
  15. 15.
    Zhukov, A.P., Ponomarev, B.K.: Sov. Phys. Solid State 31, 26 (1989) Google Scholar
  16. 16.
    Zhukov, A., Vázquez, M., Velázquez, J., Garcia, C., Valenzuela, R., Ponomarev, B.: J. Mater. Sci. Eng. A 226–228, 753 (1997) CrossRefGoogle Scholar
  17. 17.
    García, C., Zhukova, V., Gonzalez, J., Blanco, J.M., Zhukov, A.: Physica B 403, 286 (2008) CrossRefADSGoogle Scholar
  18. 18.
    Komova, E., Varga, M., Varga, R., Vojtanik, P., Torrejon, J., Provencio, M., Vazquez, M.: J. Phys. C, Condens. Matter 19, 236229 (2007) CrossRefADSGoogle Scholar
  19. 19.
    Moron, C., Aroca, C., Sanchez, M.C., Garcia, A., Lopez, E., Sanchez, P.: IEEE Trans. Magn. 31, 906 (1995) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • V. Rodionova
    • 1
    • 2
    • 3
  • M. Ipatov
    • 1
  • M. Ilyn
    • 1
  • V. Zhukova
    • 1
  • N. Perov
    • 2
  • J. Gonzalez
    • 1
  • A. Zhukov
    • 1
    • 4
  1. 1.Dpto de Física de Materiales, Facultad de QuímicasUPV/EHUSan SebastiánSpain
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia
  3. 3.Institute for Theoretical and Applied ElectromagneticsRussian Academy of SciencesMoscowRussia
  4. 4.TAMAG Ibérica S.L.Parque Tecnológico de MiramónSan SebastiánSpain

Personalised recommendations