The Magnetic Properties for Europium-Doped BiFeO3

  • Sung Wook Hyun
  • Kang Ryong Choi
  • Chul Sung Kim
Original Paper

Abstract

The crystallographic and magnetic properties of europium-doped Bi1−xEuxFeO3 prepared by a sol-gel method have been studied by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometer, vibrating sample magnetometer (VSM) and Mössbauer spectroscopy. The X-ray diffraction pattern for Bi0.9Eu0.1FeO3 was analyzed by the Rietveld refinement using FULLPROF computer program. The crystals were determined to be a rhombohedrally distorted perovskite-like structure with a space group of R3c. SQUID and VSM measurements showed the antiferromagnetic behavior with Néel temperature (TN) of 638 and 633 K for x=0.1 and 0.2, respectively. A least-squares fitting program was used to determine the Mössbauer parameters by assuming Lorentzian line shapes. The valence state of Fe ion is Fe3+ relative to the Fe metal, according to the isomer shift (δ) value = 0.39 mm/s at 4.2 K. In determining the inter-atomic binding force in Bi0.9Eu0.1FeO3, the Debye temperature was 486 and 477 K, respectively.

Keywords

Mössbauer spectroscopy Multiferroic Perovskite BiFeO3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Valasek, J.: Phys. Rev. 15, 537 (1920) Google Scholar
  2. 2.
    Mathur, N.D., et al.: Nature 394, 39 (1998) CrossRefADSGoogle Scholar
  3. 3.
    Kimura, T., et al.: Nature 426, 55 (2003) CrossRefADSGoogle Scholar
  4. 4.
    Reddy, V.R., et al.: Appl. Phys. Lett. 94, 082505 (2009) CrossRefADSGoogle Scholar
  5. 5.
    Balke, N., et al.: Nature Nanotech. 4, 868 (2009) CrossRefADSGoogle Scholar
  6. 6.
    Prellier, W., et al.: J. Phys.: Condens. Matter 17, R803 (2005) CrossRefADSGoogle Scholar
  7. 7.
    Zhao, T., et al.: Nature Mater. 5, 823 (2006) CrossRefADSGoogle Scholar
  8. 8.
    Chu, Y.-H., et al.: Nature Mater. 7, 478 (2008) CrossRefADSGoogle Scholar
  9. 9.
    Yang, C.-H., et al.: Nature Mater. 8, 485 (2009) CrossRefADSGoogle Scholar
  10. 10.
    Sosnowska, I., et al.: Appl. Phys. A 74, S1040 (2002) CrossRefADSGoogle Scholar
  11. 11.
    Blaauw, C., van der Woude, F.: J. Phys. C: Solid State Phys. 6, 1422 (1973) CrossRefADSGoogle Scholar
  12. 12.
    Sosnowska, I., et al.: Physica B 180, 117 (1992) CrossRefADSGoogle Scholar
  13. 13.
    Teage, J.R., et al.: Solid State Commun. 8, 1073 (1970) CrossRefADSGoogle Scholar
  14. 14.
    Sosnowska, I., et al.: J. Phys. C 15, 4835 (1982) CrossRefADSGoogle Scholar
  15. 15.
    Sosnowska, I., et al.: J. Magn. Magn. Mater. 140–144, 167 (1995) CrossRefGoogle Scholar
  16. 16.
    Oak, H.N., et al.: Phys. Stat. Solidi (b) 208, 249 (1998) CrossRefADSGoogle Scholar
  17. 17.
    Mössbauer, R.L., Widermann, W.H.: Z. Phys. 159, 33 (1960) CrossRefADSGoogle Scholar
  18. 18.
    Uniyal, P., Yadav, K.L.: J. Appl. Phys. 105, 07D914 (2009) CrossRefGoogle Scholar
  19. 19.
    Troyanchuk, I.O., et al.: JETP Lett. 89, 180 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sung Wook Hyun
    • 2
  • Kang Ryong Choi
    • 1
  • Chul Sung Kim
    • 2
  1. 1.Department of PhysicsPohang University of Science and TechnologyPohangKorea
  2. 2.Department of PhysicsKookmin UniversitySeoulKorea

Personalised recommendations