Journal of Superconductivity and Novel Magnetism

, Volume 24, Issue 1–2, pp 1077–1081

An Efficient SQUID NDE Defect Detection Approach by Using an Adaptive Finite-Element Modeling

  • Farrokh Sarreshtedari
  • Sasan Razmkhah
  • Nahid Hosseini
  • Jurgen Schubert
  • Marko Banzet
  • Mehdi Fardmanesh
Original Paper

Abstract

Incorporating the finite-element method for the modeling of the SQUID NDE response to a predefined defect pattern, an adaptive algorithm has been developed for the reconstruction of unknown defects using an optimization algorithm for updating of the forward problem. The defect reconstruction algorithm starts with an initial estimation for the defect pattern. Then the forward problem is solved and the obtained field pattern is compared with the measured signal from the SQUID NDE system. The result is used by an optimization algorithm to update the defect structure to be incorporated in the FEM forward problem for the next iteration. Since the mentioned model based inverse algorithm normally consumes a lot of computational resources, the number of iterations plays an important role in the determination of the total response convergence time. Consequently, different optimization algorithms have been applied and their performances are compared. In this work by incorporating an efficient forward model and using the stochastic and deterministic optimization algorithms for defect updating we have investigated their performance on the inversion of the SQUID NDE signal and also their ability to defect reconstruction in the noisy environment.

Keywords

SQUID NDE Defect detection algorithm Finite-element modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kleiner, R., Koelle, D., Clarke, J.: Proc. IEEE 92, 10 (2004) CrossRefGoogle Scholar
  2. 2.
    Sepulveda, N.G., Wikswo, J.P. Jr.: J. Appl. Phys. 79(4), 2122 (1996) CrossRefADSGoogle Scholar
  3. 3.
    Chen, Z., Yusa, N., Miya, K.: Nondestruct. Test. Evaluation 24(1–2), 69 (2009) CrossRefADSGoogle Scholar
  4. 4.
    Liu, X., Deng, Y., Zeng, Z., Udpa, L., Udpa, S.S.: IEEE Trans. Magn. 45(3), 1486 (2009) CrossRefADSGoogle Scholar
  5. 5.
    Li, Y., Udpa, L., Udpa, S.S.: IEEE Trans. Magn. 40(12), 410 (2004) CrossRefADSGoogle Scholar
  6. 6.
    Liu, G.R., Han, X.: CRC press LCC (2003) Google Scholar
  7. 7.
    Liu, X., Deng, Y., Zeng, Z., Udpa, L., Udpa, S.S.: IEEE Trans. Magn. 45(3), 1486 (2009) CrossRefADSGoogle Scholar
  8. 8.
    Chen, Z., Miya, K.: J. Nondestruct. Evaluation 17, 167 (1998) Google Scholar
  9. 9.
    Badics, Z., Komatsu, H., Matsumoto, Y., Aoki, K.: J. Nondestruct. Evaluation 17, 2 (1998) Google Scholar
  10. 10.
    Ratnajeevan, S., Hoole, H., Subramaniam, S., Saldanha, R., Coulomb, J.-L., Sabonnadiere, J.-C.: IEEE Trans. Magn. 27, 3 (1991) CrossRefGoogle Scholar
  11. 11.
    Li, Y., et al.: An adjoint equation based method for 3D eddy current NDE signal inversion. In: Electromagnetic Nondestructive Evaluation (V), pp. 89–96. IOS, Amsterdam (2001) Google Scholar
  12. 12.
    Sarreshtedari, F., Pourhashemi, A., Asad, N., Schubert, J., Banzet, M., Fardmanesh, M.: IEEE Trans. Superconduct. 20(2), 76 (2010) CrossRefADSGoogle Scholar
  13. 13.
    Fardmanesh, M., Sarreshtedari, F., Pourhashemi, A., Ansari, E., Vesaghi, M., Schubert, J., Banzet, M., Krause, H.-J.: IEEE Trans. Appl. Superconduct. 19(3), 791 (2009) CrossRefADSGoogle Scholar
  14. 14.
    Khatami, Yi, Alavi, M., Sarreshtedari, F., Vesaghi, M., Banzet, M., Schubert, J., Fardmanesh, M.: J. Phys.: Conf. Ser. 1, 012046 (2008) Google Scholar
  15. 15.
    Sarreshtedari, F.: Jahed, N.MS., Hosseini, N., Pourhashemi, A., Banzet, M., Schubert, J., Fardmanesh, M.: J. Phys.: Conf. Ser., Inst. Phys., To be published (2010) Google Scholar
  16. 16.
    Kennedy, J., Eberhart, R.C.: In: IEEE International Conference on Neural Networks (1995) Google Scholar
  17. 17.
    Jameson, A.: MAE Technical Report, 2057. Princeton University, (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Farrokh Sarreshtedari
    • 1
  • Sasan Razmkhah
    • 1
  • Nahid Hosseini
    • 1
  • Jurgen Schubert
    • 2
  • Marko Banzet
    • 2
  • Mehdi Fardmanesh
    • 1
  1. 1.Department of Electrical EngineeringSharif University of TechnologyTehranIran
  2. 2.Forschungszentrum JülichInstitute of Bio and Nano-systemsJuelichGermany

Personalised recommendations