Implementation of Molecular Transistor Electrodes by Electromigration

  • A. S. Stepanov
  • E. S. Soldatov
  • O. V. Snigirev
Original Paper


Gaps with a size of less than 5 nm have been fabricated in 15-nm-thick and 200-nm-wide gold strips deposited on sapphire substrates. Preparation conditions providing a sufficient adhesion of such electrodes as well as the parameters for the electromigration process used to fabricate the gaps have been found which allow a successful gap implementation. Such gaps transform gold strips to the source-drain electrodes of planar single electron transistors based on nanoparticles or molecules.


Single-molecule transistor Electromigration Nanogap Deposition of Au on Al2O3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gruener, W.: Next up for Intel’s 32 nm chips: prepare-for-production.’s-32-nm-chips-prepare-for-production, December 10, 2008
  2. 2.
    Clarke, P.: Global foundries’ Dresden fab to run 22-nm CMOS., March 11, 2010
  3. 3.
    Lemmers, D.: Sematech crafts ZIL solution for 16 nm., June 29, 2009
  4. 4.
    The International Technology Roadmap for Semiconductors. (2009)
  5. 5.
    Markoff, J.: Technology; Intel’s big shift after hitting technical wall., May 17, 2004
  6. 6.
    Soldatov, E.S., Khanin, V.V., Trifonov, A.S., et al.: Single-electron transistor based on a single cluster molecule at room temperature. JETP Lett. 64, 556 (1996) CrossRefADSGoogle Scholar
  7. 7.
    Park, J., et al.: Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722 (2002) CrossRefADSGoogle Scholar
  8. 8.
    Kubatkin, S., et al.: Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698 (2003) CrossRefADSGoogle Scholar
  9. 9.
    Bezryadin, A., Dekker, C., Schmid, G.: Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 71(9), 1273 (1997) CrossRefADSGoogle Scholar
  10. 10.
    Steinman, P., Weaver, J.M.R.: Fabrication of sub-5 nm gaps between metallic electrodes using conventional lithographic techniques. J. Vac. Sci. Technol. B 22, 3178 (2004) CrossRefGoogle Scholar
  11. 11.
    Morpurgo, A.F., Marcus, C.M., Robinson, D.B.: Controlled fabrication of metallic electrodes with atomic separation. Appl. Phys. Lett. 74, 2084 (1999) CrossRefADSGoogle Scholar
  12. 12.
    Kervennic, Y.V., van der Zant, H.S.J., Morpurgo, A.F., Gurevich, L., Kouwenhoven, L.P.: Nanometer-spaced electrodes with calibrated separation. Appl. Phys. Lett. 80, 321 (2002) CrossRefADSGoogle Scholar
  13. 13.
    Saiful, I., Khondaker, Z.Y.: Fabrication of nanometer-spaced electrodesusing gold nanoparticles. Appl. Phys. Lett. 81, 24 (2002) Google Scholar
  14. 14.
    Park, H., Lim, A.K.L., et al.: Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75(2), 301–303 (1999) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Fulton, T.A., Dolan, G.J.: Observation of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett. 59, 109–112 (1987) CrossRefADSGoogle Scholar
  16. 16.
    Trouwborst, M.L., van der Molen, S.J., van Wees, B.J.: The role Joule heating in the formation of nanogaps by electromigration. J. Appl. Phys. 99, 114316 (2006) CrossRefADSGoogle Scholar
  17. 17.
    Esen, G., Fuhrer, M.S.: Appl. Phys. Lett. 87, 263101 (2005) CrossRefADSGoogle Scholar
  18. 18.
    Heersche, H.B., Lientschnig, G., et al.: In situ imaging of electromigration-induced nanogap formation by transmission electron microscopy. Appl. Phys. Lett. 91(7), 072107 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • A. S. Stepanov
    • 1
  • E. S. Soldatov
    • 2
  • O. V. Snigirev
    • 1
    • 2
  1. 1.IMPRRC “Kurchatov Institute”MoscowRussia
  2. 2.M.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations