Collapse of ρxx Ringlike Structures in 2DEGs Under Tilted Magnetic Fields

Original Paper

Abstract

In the quantum Hall regime, the longitudinal resistivity ρxx plotted as a density–magnetic-field (n2DB) diagram displays ringlike structures due to the crossings of two sets of spin split Landau levels from different subbands [see, e.g., Zhang et al., in Phys. Rev. Lett. 95:216801, 2005. For tilted magnetic fields, some of these ringlike structures “shrink” as the tilt angle is increased and fully collapse at θc≈6°. Here we theoretically investigate the topology of these structures via a non-interacting model for the 2DEG. We account for the inter Landau-level coupling induced by the tilted magnetic field via perturbation theory. This coupling results in anticrossings of Landau levels with parallel spins. With the new energy spectrum, we calculate the corresponding n2DB diagram of the density of states (DOS) near the Fermi level. We argue that the DOS displays the same topology as ρxx in the n2DB diagram. For the ring with filling factor ν=4, we find that the anticrossings make it shrink for increasing tilt angles and collapse at a large enough angle. Using effective parameters to fit the θ=0° data, we find a collapsing angle θc≈3.6°. Despite this factor-of-two discrepancy with the experimental data, our model captures the essential mechanism underlying the ring collapse.

Keywords

Quantum Hall ferromagnetism Magnetoresistance in 2DEGs Landau level crossings 

References

  1. 1.
    Das Sarma, S., Pinczuk, A.: Perspectives in Quantum Hall Effects. Wiley, New York (1997) Google Scholar
  2. 2.
    Bastard, G.: Wave Mechanics Applied to Semiconductor Heterostructures, Monographies de Physique. Les Editions de Physique, Les Ulis Cedex (1988) Google Scholar
  3. 3.
    Jungwirth, T., MacDonald, A.H.: Phys. Rev. B 63, 035305 (2000) CrossRefADSGoogle Scholar
  4. 4.
    Freire, H.J.P., Egues, J.C.: Phys. Rev. Lett. 99, 026801 (2007) CrossRefADSGoogle Scholar
  5. 5.
    De Poortere, E.P., Tutuc, E., Papadakis, S.J., Shayegan, M.: Science 290, 1546 (2000) CrossRefADSGoogle Scholar
  6. 6.
    Jaroszyński, J., Andrearczyk, T., Karczewski, G., Wróbel, J., Wojtowicz, T., Papis, E., Kamińska, E., Piotrowska, A., Popović, D., Dietl, T.: Phys. Rev. Lett. 89, 266802 (2002) CrossRefADSGoogle Scholar
  7. 7.
    Davies, A.G., Barnes, C.H.W., Zolleis, K.R., Nicholls, J.T., Simmons, M.Y., Ritchie, D.A.: Phys. Rev. B 54, R17331 (1996) CrossRefADSGoogle Scholar
  8. 8.
    Muraki, K., Saku, T., Hirayama, Y.: Phys. Rev. Lett. 87, 196801 (2001) CrossRefADSGoogle Scholar
  9. 9.
    Zhang, X.C., Faulhaber, D.R., Jiang, H.W.: Phys. Rev. Lett. 95, 216801 (2005) CrossRefADSGoogle Scholar
  10. 10.
    Ellenberger, C., Simovic, B., Leturcq, R., Ihn, T., Ulloa, S., Ensslin, K., Driscoll, D.C., Gossard, A.C.: Phys. Rev. B 74, 195313 (2006) CrossRefADSGoogle Scholar
  11. 11.
    Zhang, X.C., Martin, I., Jiang, H.W.: Phys. Rev. B 74, 073301 (2006a) CrossRefADSGoogle Scholar
  12. 12.
    Zhang, X.C., Scott, G.S., Jiang, H.W.: Phys. Rev. Lett. 98, 246802 (2006b) CrossRefADSGoogle Scholar
  13. 13.
    Guo, G.P., Zhao, Y.J., Tu, T., Hao, X.J., Zhang, X.C., Guo, G.C., Jiang, H.W.: Phys. Rev. B 78, 233305 (2008) CrossRefADSGoogle Scholar
  14. 14.
    Kumada, N., Iwata, K., Tagashira, K., Shimoda, Y., Muraki, K., Hirayama, Y., Sawada, A.: Phys. Rev. B 77, 155324 (2008) CrossRefADSGoogle Scholar
  15. 15.
    Jungwirth, T., MacDonald, A.H.: Phys. Rev. Lett. 87, 216801 (2001) CrossRefADSGoogle Scholar
  16. 16.
    Ferreira, G.J., Freire, H.J.P., Egues, J.C.: Phys. Stat. Solidi (c) 3, 4364 (2006) CrossRefGoogle Scholar
  17. 17.
    Gerhardts, R.R.: Surf. Sci. 58, 227 (1976) CrossRefADSGoogle Scholar
  18. 18.
    Ando, T.: J. Phys. Soc. Jpn. 52, 1740 (1983) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Ando, T., Fowler, A.B., Stern, F.: Rev. Mod. Phys. 54, 437 (1982) CrossRefADSGoogle Scholar
  20. 20.
    Prange, R.E.: Phys. Rev. B 23, R4802 (1981) We consider that all electrons are extended (conducting) CrossRefADSGoogle Scholar
  21. 21.
    Ferreira, G.J., Freire, H.J.P., Egues, J.C.: arXiv:0909.2175v1 [cond-mat.mes-hall]

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departamento de Física e Informática, Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations