Journal of Superconductivity and Novel Magnetism

, Volume 22, Issue 6, pp 527–528

Unity in the Diversity

  • Antonio Bianconi
  • Nicola Poccia
  • Alessandro Ricci


The Superstripes 2008 conference has been focused on the discovery of the amplification of the superconducting critical temperature Tc in a novel realization (iron pnictides) of metallic heterostructures at the atomic limit called superstripes. These are formed by superlattices of superconducting units (layers, or stripes, or wires, or spheres or balls) separated by an intercalated material. Superstripes show multiband high Tc superconductivity driven by the shape resonance or Feshbach resonance in the interband pairing that occurs by tuning the chemical potential at an electronic topological transition where the Fermi surface topology of one of the bands changes its dimensionality. The maximum Tc amplification is reached by tuning the chemical potential to “shape resonance” by changing: the charge density and/or the superlattice structural parameters.


Multiband superconductivity Feshbach resonance Shape resonance Iron pnictides 


  1. 1.
    Kamihara, Y., : Iron-based layered superconductor LaO1−x FxFeAs (x=0.05–0.12) with T c=26 K. J. Am. Chem. Soc. 130, 3296 (2008) CrossRefGoogle Scholar
  2. 2.
    Ren, Z.-A., : Novel superconductivity and phase diagram in the iron-based arsenic-oxides ReFeAsO1−δ (Re = rare earth metal) without F-doping. Europhys. Lett. 83, 17002 (2008). doi:10.1209/0295-5075/83/17002 CrossRefADSGoogle Scholar
  3. 3.
    Rotter, M., : Superconductivity at 38K in the iron arsenide (Ba1−xKx)Fe2As2. Phys. Rev. Lett. 101, 107006 (2008) CrossRefADSGoogle Scholar
  4. 4.
    Kivelson, S.A., : Iron-based superconductors: Unity or diversity? Nat. Mater. 7, 927–928 (2008). doi:10.1038/nmat2325 CrossRefADSGoogle Scholar
  5. 5.
    Norman, M.R.: High-temperature superconductivity in the iron pnictides. Physics 1, 21 (2008). doi:10.1103/Physics.1.21 CrossRefGoogle Scholar
  6. 6.
    Bianconi, A.: Process of increasing the critical temperature T c of a bulk superconductor by making metal heterostructures at the atomic limit. United States Patent No.:US6,265,019B1, July 24, 2001 Google Scholar
  7. 7.
    Fratini, M., : The effect of internal pressure on the tetragonal to monoclinic structural phase transition in ReOFeAs: the case of NdOFeAs. Supercond. Sci. Technol. 21, 092002 (2008). doi:10.1088/0953-2048/21/9/092002 CrossRefADSGoogle Scholar
  8. 8.
    Kugel, K.I., : Model for phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors. Phys. Rev. B 78, 165124 (2008). doi:10.1103/PhysRevB.78.165124 CrossRefADSGoogle Scholar
  9. 9.
    Poccia, N., : The misfit strain critical point in the 3D phase diagrams of cuprates. J. Supercond. Novel Magn. 22, 1557 (2009). doi:10.1007/s10948-008-0435-8 CrossRefGoogle Scholar
  10. 10.
    Caivano, R., : Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Supercond. Sci. Technol. 22, 014004 (2009). doi:10.1088/0953-2048/22/1/014004 CrossRefADSGoogle Scholar
  11. 11.
    Bianconi, G.: Quantum statistics in complex networks. Phys. Rev. E 66, 056123 (2002). doi:10.1103/PhysRevE.66.056123 CrossRefADSGoogle Scholar
  12. 12.
    Shen, Y., : Fermi-Dirac statistics of complex networks. Chin. Phys. Lett. 22, 1281 (2005). doi:10.1088/0256-307X/22/5/072 CrossRefADSGoogle Scholar
  13. 13.
    Ahn, K., Lookman, H.T., Bishop, A.R.: Strain-induced metal-insulator phase coexistence in perovskite manganites. Nature 428, 401 (2004). CrossRefADSGoogle Scholar
  14. 14.
    Kusmartsev, F.V.: Formation of electron strings in narrow band polar semiconductors. Phys. Rev. Lett. 2000 84, 530 (2000). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Antonio Bianconi
    • 1
  • Nicola Poccia
    • 1
  • Alessandro Ricci
    • 1
  1. 1.Physics DepartmentSapienza UniversityRomeItaly

Personalised recommendations