Advertisement

Physics of Silicene Stripes

  • A. Kara
  • C. Léandri
  • M. E. Dávila
  • P. De Padova
  • B. Ealet
  • H. Oughaddou
  • B. Aufray
  • G. Le LayEmail author
Original Paper

Abstract

Silicene, a monolayer of silicon atoms tightly packed into a two-dimensional honeycomb lattice, is the challenging hypothetical reflection in the silicon realm of graphene, a one-atom thick graphite sheet, presently the hottest material in condensed matter physics. If existing, it would also reveal a cornucopia of new physics and potential applications. Here, we reveal the epitaxial growth of silicene stripes self-aligned in a massively parallel array on the anisotropic silver (110) surface. This crucial step in the silicene “gold rush” could give a new kick to silicon on the electronics road-map and open the most promising route towards wide-ranging applications. A hint of superconductivity in these silicene stripes poses intriguing questions related to the delicate interplay between paired correlated fermions, massless Dirac fermions and bosonic quasiparticles in low dimensions.

Keywords

Silicene Graphene Stripes Superconductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novoselov, K.S., et al.: Science 306, 666 (2004) CrossRefGoogle Scholar
  2. 2.
    Novoselov, K.S., et al.: Proc. Natl. Acad. Sci. USA 102, 10451 (2005) CrossRefADSGoogle Scholar
  3. 3.
    Novoselov, K.S., et al.: Nature 438, 197 (2005) CrossRefADSGoogle Scholar
  4. 4.
    Geim, A.K., Novoselov, K.S.: Nature Mater. 6, 183 (2007) CrossRefADSGoogle Scholar
  5. 5.
    Kumar, V. (ed.): Nanosilicon. Elsevier, Amsterdam (2007) Google Scholar
  6. 6.
    Guzman-Verri, G.G., Lew Yan Voon, L.C.: Phys. Rev. B 76, 075131 (2007) CrossRefADSGoogle Scholar
  7. 7.
    Fagan, S.B., et al.: Phys. Rev. B 61, 9994 (2000) CrossRefADSGoogle Scholar
  8. 8.
    De Crescenzi, M., et al.: Appl. Phys. Lett. 86, 231901 (2005) CrossRefADSGoogle Scholar
  9. 9.
    Perepichka, D.F., Rosei, F.: Small 2, 22 (2006) CrossRefGoogle Scholar
  10. 10.
    Kara, A. et al.: submitted Google Scholar
  11. 11.
    Léandri, C., et al.: Surface Sci. 574, L9 (2005) CrossRefGoogle Scholar
  12. 12.
    De Padova, P., et al.: Nano Lett. 8, 271 (2008) CrossRefGoogle Scholar
  13. 13.
    De Padova, P., et al.: Nano Lett. 8, 2299 (2008) CrossRefGoogle Scholar
  14. 14.
    Sahaf, H., et al.: Appl. Phys. Lett. 90, 263110 (2007) CrossRefADSGoogle Scholar
  15. 15.
    Himpsel, F.J., McFeely, F.R., Taleb-Ibrahimi, A., Yarmoff, J.A., Hollinger, G.: Phys. Rev. B 38, 6084 (1988) CrossRefADSGoogle Scholar
  16. 16.
    Neto, A.C., Guinea, F., Peres, N.M.: Phys. World 1 (Nov., 2006) Google Scholar
  17. 17.
    Wilson, M.: Phys. Today 21 (Jan., 2006) Google Scholar
  18. 18.
    Silly, M.G., Charra, F., Soukiassian, P.: Appl. Phys. Lett. 91, 222311 (2007) Google Scholar
  19. 19.
    Berger, C., et al.: J. Phys. Chem. B 108, 19912 (2004) CrossRefGoogle Scholar
  20. 20.
    Geim, A.K., Kim, P.: Sci. Am. 90 (April 2008) Google Scholar
  21. 21.
    Tse, J., et al.: J. Phys. Chem. B 110, 3721 (2006) CrossRefGoogle Scholar
  22. 22.
    Bustarret, E., et al.: Nature 444, 465 (2006) CrossRefADSGoogle Scholar
  23. 23.
    Bourgeois, O., et al.: Phys. Rev. Lett. 88, 186403 (2002) CrossRefADSGoogle Scholar
  24. 24.
    Mello, K.E., et al.: Appl. Phys. Lett 68, 681 (1996) CrossRefADSGoogle Scholar
  25. 25.
    McAlpine, M.C., et al.: J. Am. Chem. Soc. 130, 9583 (2008) CrossRefGoogle Scholar
  26. 26.
    Shao, M.-W., Shan, Y.-Y., Wong, N.-B., Lee, S.-T.: Adv. Funct. Mater 15, 1478 (2005) CrossRefGoogle Scholar
  27. 27.
    Alivisatos, P.: Nature Biotechnol. 22, 47 (2004) CrossRefGoogle Scholar
  28. 28.
    Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., Lieber, C.M.: Nature Biotechnol. 47, 1294 (2005) CrossRefGoogle Scholar
  29. 29.
    Salomon, E., Kahn, A.: Surface Sci. 602, L79 (2008) CrossRefADSGoogle Scholar
  30. 30.
    Tian, B., et al.: Nature 449, 885 (2007) CrossRefADSGoogle Scholar
  31. 31.
    Schiermeier, Q., Tollefson, J., Scully, T., Witze, A., Morton, O.: Nature 454, 816 (2008) CrossRefGoogle Scholar
  32. 32.
    Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Phys. Rev. B 75, 153401 (2007) CrossRefADSGoogle Scholar
  33. 33.
    Lan, J., Cheng, D., Cao, D., Wang, W.: J. Phys. Chem. C 112, 5598 (2008) CrossRefGoogle Scholar
  34. 34.
    Voit, J.: Rep. Prog. Phys. 58, 977 (1995) CrossRefADSGoogle Scholar
  35. 35.
    Iraji-sad, A., Hardiman, M.: Solid State Comm. 83, 467 (1992) CrossRefADSGoogle Scholar
  36. 36.
    Liu, Y., Nease, B., Goldman, A.M.: Phys. Rev. B 45, 10143 (1992) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. Kara
    • 2
  • C. Léandri
    • 1
  • M. E. Dávila
    • 3
  • P. De Padova
    • 4
  • B. Ealet
    • 1
  • H. Oughaddou
    • 5
    • 6
  • B. Aufray
    • 1
  • G. Le Lay
    • 1
    Email author
  1. 1.CINaMCNRSMarseille Cedex 09France
  2. 2.Department of PhysicsUniversity of Central FloridaOrlandoUSA
  3. 3.Instituto de Ciencia de Materiales de MadridCSICMadridSpain
  4. 4.ISM, CNRvia del Fosso del CavaliereRomeItaly
  5. 5.SIMACEAGif sur Yvette CedexFrance
  6. 6.Département de PhysiqueUniversité de Cergy-PontoiseCergy-Pontoise cedexFrance

Personalised recommendations