Advertisement

The Never-Ending Search for High-Temperature Superconductivity

  • Theodore H. Geballe
Article

Keywords

PbTe Cuprate Superconductor Double Chain Dope Hole Modern Phys 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. K. Onnes, Comm. Phys. Lab. Univ. Leiden. 122b (1911).Google Scholar
  2. 2.
    D. Schoenberg, Superconductivity (Cambridge University Press, London, 2nd Edition, 1952), reprinted with an additional appendix, 1960.Google Scholar
  3. 3.
    V. L. Ginzburg and L. D. Landau, JETP 20, 1064 (1950).Google Scholar
  4. 4.
    B. Sevin and J. Bardeen, Handbuck der Physik, Vol. XV: Low Temperature Physics II, S. Flügge, ed. (Springer-Verlag, Berlin, 1956).Google Scholar
  5. 5.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    W. Meissner, Z. Fur. Phys. 58, 570 (1929).CrossRefADSGoogle Scholar
  7. 7.
    W. Meissner, H. Franz, and H. Westerhoff, Z. Phys. 75, 521 (1932).CrossRefADSGoogle Scholar
  8. 8.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).CrossRefADSGoogle Scholar
  9. 9.
    J. K. Hulm and B. T. Matthias, Phys. Rev. 87, 799 (1952).CrossRefADSGoogle Scholar
  10. 10.
    B. T. Matthias, Prog. Low Temp. Phys. 2, 138 (1957); J. K. Hulm and R. D. Blaugher, Phys. Rev. 123, 1569 (1961).Google Scholar
  11. 11.
    B. W. Roberts, J Phys. Chem. Ref. Data 5, 581 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    B. T. Matthias, T. H. Geballe, and E. Corenzwit, Rev. Modern Phys. 35, 1 (1963).CrossRefADSGoogle Scholar
  13. 13.
    R. M. White and T. H. Geballe, Long Range Order in Solids (Academic Press, London, 1979).Google Scholar
  14. 14.
    G. F. Hardy and J. K. Hulm, Phys. Rev. 93, 1004 (1954).CrossRefADSGoogle Scholar
  15. 15.
    B. T. Matthias, T. H. Geballe, S. Geller, and E. Corenzwit, Phys. Rev. 95, 1435 (1954).CrossRefADSGoogle Scholar
  16. 16.
    J. E. Kunzler, E. Buehler, F. S. L. Hsu, and J. H. Wernick, Phys. Rev. Lett. 6(3), 89 (1961).CrossRefADSGoogle Scholar
  17. 17.
    A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).Google Scholar
  18. 18.
    X. F. Sun, S. Ono, Y. Abe, S. Komiya, K. Segawa, and Y. Ando, PRL 96, 17008 (2006); H. Eisaki, N. Kaneko, D. L. Feng, A. Damascelli, P. K. Mang, K. M. Shen, Z. X. Shen, and M. Greven, PRB 69, 64512 (2004).CrossRefADSGoogle Scholar
  19. 19.
    V. L. Ginzburg, About Science, Myself and Others (Institute of Physics Publishing, Bristol and Philadelphia, 2005).Google Scholar
  20. 20.
    J. G. Bednorz and K. A. Mueller, Zeitschrift fur Physik B 64, 189 (1986).CrossRefADSGoogle Scholar
  21. 21.
    H. K. Onnes and W. Tuyn, Leiden Comm. 160b (1922).Google Scholar
  22. 22.
    E. Maxwell, Phys. Rev. 78, 477 (1950); C. Reynolds, B. Serin et al., Phys. Rev. 78, 487.CrossRefADSGoogle Scholar
  23. 23.
    J. M. Rowell and W. L. Macmillan, in Superconductivity, R. D. Parks, ed. (Dekker, New York, 1969).Google Scholar
  24. 24.
    P. B. Allen and R. C. Dynes, PRB 12, 905 (1975).CrossRefADSGoogle Scholar
  25. 25.
    P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962); G. M. Eliashberg, JETP 11, 696 (1960); W. L. MacMillan, Phys. Rev. 167, 331 (1968).Google Scholar
  26. 26.
    W. A. Little, Phys. Rev. A 134, 1416 (1964).CrossRefADSGoogle Scholar
  27. 27.
    V. L. Ginzburg, Phys. Lett. 13, 101 (1964).ADSGoogle Scholar
  28. 28.
    D. Allender, J. Bray, and J. Bardeen, Phys. Rev. B 7, 1020 (1973).CrossRefADSGoogle Scholar
  29. 29.
    M. L. Cohen and P. W. Anderson, in Proceedings of the AIP Conference on d- and f-Band Metals, D. H. Douglass, ed. (American Institute of Physics, New York, 1972).Google Scholar
  30. 30.
    V. L. Ginzburg and D. A. Kirznits, eds., High-Temperature Superconductivity, translated from Russian by A. K. Agyel and edited by Joseph Birman (Consultants Bureau, Plenum Press, New York, 1982).Google Scholar
  31. 31.
    P. W. Andersen, PRL 343, 953 (1975).CrossRefADSGoogle Scholar
  32. 32.
    I. A. Chernik and S. N. Lykov, Pis’ma Zh Eksp Teor Fiz 7, 94 (1981); Sov. Phys. Solid State 23, 817 (1981).Google Scholar
  33. 33.
    V. I. Kaidanov and Yu. I. Ravich, Sov. Phys. Usp. 28, 31 (1985).CrossRefADSGoogle Scholar
  34. 34.
    S. A. Nemov and Yu. I. Ravich, Sov. Phys. Usp. 41, 735 (1998).Google Scholar
  35. 35.
    B. Y. Moyzhes and S. G. Suprun, Sov. Phys. Solid State 24, 309 (1982); I. A. Drabkin and B. Y. Moyzhes, Sov. Phys. Solid State 29(2), 252 (1987).Google Scholar
  36. 36.
    Y. Matsushita, H. Bluhm, T. H. Geballe, and I. R. Fisher, PRL 94, 157002 (2005).CrossRefADSGoogle Scholar
  37. 37.
    M. Dzero and J. Schmalien, PRL 94, 157003 (2005).CrossRefADSGoogle Scholar
  38. 38.
    Y. Matsushita et al., unpublished.Google Scholar
  39. 39.
    J. K. Hulm, M. Askin, D. W. Deis, and C. K. Jones, Prog. Low Temp. Phys. VI, 205 (1970).CrossRefGoogle Scholar
  40. 40.
    M. Imada, A Fujjimori, and Y. Tokura, Rev. Modern Phys. 70, 1039 (1998).CrossRefADSGoogle Scholar
  41. 41.
    S. Chakravarty, A. Sudho, and P. W. Andersen, Science 261, 351 (1993).CrossRefGoogle Scholar
  42. 42.
    G. Koster, T. H. Geballe, and B. Moyzhes, Phys. Rev. B 66, 085109 (2002).CrossRefADSGoogle Scholar
  43. 43.
    L. A. Drabkin, B. Ya. Mozyhes, and S. G. Suprun, Sov. Phys. Solid State 27, 7 (1985).Google Scholar
  44. 44.
    F. A. Cotton and G.Wilkenson, Advanced Inorgasnic Chemistry (5th Edition, John Wiley, NY, 1988).Google Scholar
  45. 45.
    J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).CrossRefADSGoogle Scholar
  46. 46.
    M. Imada, A. Fujimori, and Y. Tokura, Rev. Modern Phys. 70, 1040 (1998); Y. Ando, et al., Phys. Rev. Lett 87, 17001 (2001).Google Scholar
  47. 47.
    M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Eudok, Rev. Modern Phys. 70, 897 (1998).CrossRefADSGoogle Scholar
  48. 48.
    J. Orenstein and A. Millis, Science (2002); M. Imada, A. Fujimora, and Y. Tokura, Rev. Modern Phys. 70, 1039 (1998); D. N. Basov and T. Timusk, Rev. Modern Phys. 77, 744 (2005); E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orged, in The Physics of Conventional and Unconventional Superconductors, K. H. Bennema and J. B. Ketterson, eds. (Springer-Verlag, Berlin, 2004).Google Scholar
  49. 49.
    M. Karppinen, M. Kotiranta, T. Nakane et al., Phys. Rev. B 67, 134522 (2003).CrossRefADSGoogle Scholar
  50. 50.
    T. H. Geballe and B. Y. Mozhes, Physica C 341, 1821 (2000).CrossRefADSGoogle Scholar
  51. 51.
    V. Oganesyan, S. Kivelson, T. H. Geballe, andB. Y. Moyzhes, PRB 65, 1725041 (2002).Google Scholar
  52. 52.
    T. Suzuki, M. Naqoshi, Y. Fukuda, et al., PRB 40, 5184 (1989).CrossRefADSGoogle Scholar
  53. 53.
    N. Terada, I. Akira, Y. Tanaka, K. Obara, and H. Ihara, IEEE Trans. Appl. Superconduct. 11, 3126–3129 (2001).CrossRefGoogle Scholar
  54. 54.
    J. G. Kuzemskaya, A. L. Kuzemsky, and A. A. Cheglokov, J. Low Temp. Phys. 118, 147 (2000).CrossRefGoogle Scholar
  55. 55.
    S. Chakravarty, H.-Y. Kee, and K. Voelker, Nature 428, 53 (2004).CrossRefADSGoogle Scholar
  56. 56.
    H. Kotakawa et al., PRB 69, 014501 (2004).CrossRefADSGoogle Scholar
  57. 57.
    H. Mukuda, M. Abe, Y. Araki, H. Kotegawa, Y. Kitaoka, K. Tokiwa, T. Watanabe, A. Iyo, H. Kito, and Y. Tanaka, preprint.Google Scholar
  58. 58.
    I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and T. H. Geballe, Nature 422, 873 (2003).CrossRefADSGoogle Scholar
  59. 59.
    Y. Cao, Q. Xiong, Y. Y. Xue, and C. W. Chu, PRB 52, 6854 (1995).CrossRefADSGoogle Scholar
  60. 60.
    J. M. Tranquada, B. J. Sternleib, J. D. Axe et al., Nature 375, 561 (1995).CrossRefADSGoogle Scholar
  61. 61.
    C. H. Booth, F. Bridges et al., PRB 52, 15745 (1995).CrossRefADSGoogle Scholar
  62. 62.
    V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).CrossRefADSGoogle Scholar
  63. 63.
    S. Sasaki, S. Watanabe, Y. Yamada, F. Ishikawa, K. Fukuda, and S. Sekiya, cond-mat/0603067 (2006).Google Scholar
  64. 64.
    M. Matsukawa, Y. Yamada et al., Physica C 411, 101 (2004).CrossRefADSGoogle Scholar
  65. 65.
    R. Fehrenbacher et al., Phys. Rev. Lett. 70, 3471 (1993).CrossRefADSGoogle Scholar
  66. 66.
    S. Watanabe, Y. Yamada, and S. Sasaki, Physica C 426–431, 473–477 (2005).CrossRefGoogle Scholar
  67. 67.
    K. Nakada, H. Ikuta, S. Hou et al., Physica C 357, 186 (2001).CrossRefADSGoogle Scholar
  68. 68.
    R. L. Greene, G. B. Street, and L. J. Suter, PRL 334, 577 (1975).CrossRefADSGoogle Scholar
  69. 69.
    T. H. Geballe and B. Moyzhes, Ann. Phys. 13, 2026 (2004).CrossRefGoogle Scholar
  70. 70.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, New York, 1984).Google Scholar
  71. 71.
    T. Z. Kresin and S. A. Wolf, PRB 46, 6458 (1992).CrossRefADSGoogle Scholar
  72. 72.
    D. N. Basov and T. Timusk, Rev. Modern Phys. 77, 744 (2005).CrossRefGoogle Scholar
  73. 73.
    T. H. Geballe and G. Koster, Treatise on superconductivity, in Proceedings of SPIE on Strongly Correlated Electron Materials; Physics and Nanoengineering, Vol. 5932, I. bozovic and D. Pavuna, eds. (SPIE, Bellingham, WA, 2005), in press.Google Scholar
  74. 74.
    S. Hori et al., Phys. Rev. B 61, 6327 (2000); N. E. Hussey et al., Phys. Rev. Lett. 89, 86601 (2002)CrossRefADSGoogle Scholar
  75. 75.
    M. H. Julien, Y. Tokunaga, T. Feher et al., cond-mat., 0505213 (2005).Google Scholar
  76. 76.
    T. Mizokawa, K. Nakada, C. Kim, Z. X. Shen et al., Phys. Rev. B 65, 193101 (2002).CrossRefADSGoogle Scholar
  77. 77.
    M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Modern Phys. 70, 897 (1998).CrossRefADSGoogle Scholar
  78. 78.
    L. Lu et al., condmat., 0501436 (2005).Google Scholar
  79. 79.
    J. Lorenzana and G. A. Sawatzky, Phys. Rev. Lett. 74, 1867 (1995); J. Lorenzana and G. A. Sawatzky, Phys. Rev. B 52, 9576 (1995).CrossRefADSGoogle Scholar
  80. 80.
    Y. J. Kim, J. P. Hill, S. Komiya, Y. Ando et al., PRB 70, 094524 (2004).CrossRefADSGoogle Scholar
  81. 81.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984).Google Scholar
  82. 82.
    F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).CrossRefADSGoogle Scholar
  83. 83.
    S. A. Kivelson, E. Fradkin, and T. H. Geballe, Phys. Rev. B 69, 144505 (2004).CrossRefADSGoogle Scholar
  84. 84.
    A. K. McMAhan and S. Satpathy, Phys. Rev. B 38, 6650 (1988).CrossRefADSGoogle Scholar
  85. 85.
    J. Orenstein and A. J. Millis, Science 288, 458 (2000).CrossRefADSGoogle Scholar
  86. 86.
    T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).CrossRefADSGoogle Scholar
  87. 87.
    N. P. Ong, Y. Wang, S. Ono, Y. Ando, and S. Uchida, Ann. Phys. 13, 200310034 (2004).CrossRefGoogle Scholar
  88. 88.
    J. M. Tranquada, J. D. Axe, N. Ichikawa et al., Phys. Rev. B 54, 7489 (1996).CrossRefADSGoogle Scholar
  89. 89.
    T. H. Geballe and B. Y. Moyzhes, Physica C 341, 1821 (2000).CrossRefADSGoogle Scholar
  90. 90.
    X. G. Zheng et al., Phys. Rev. Lett. 85, 5170 (2000).CrossRefADSGoogle Scholar
  91. 91.
    T. H. Geballe and C. W. Chu, Comments Solid State Phys. 9, 115 (1979).Google Scholar
  92. 92.
    J. Bardeen, L. N. Coopeer, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).CrossRefADSMathSciNetzbMATHGoogle Scholar
  93. 93.
    L. P. Gorkov, Sov. Phys. JETP 1364 (1959)Google Scholar
  94. 94.
    P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).CrossRefADSGoogle Scholar
  95. 95.
    G. Gladstone, M. A. Jensen, and J. R. Schrieffer, in Superconductivity, R. D. Parks, ed. (Marcel Dekker, New York 1969), p. 665.Google Scholar
  96. 96.
    M. M. Collver and R. H. Hammond, Phys. Rev. Lett. 30, 92 (1973).CrossRefADSGoogle Scholar
  97. 97.
    P. W. Anderson, PRL 3, 325 (1959).CrossRefADSzbMATHGoogle Scholar
  98. 98.
    J. Friedel, Nuovo Cimcento Suppl. 2, 287 (1958); P. W. Anderson, Phys. Rev. 124, 411 (1961); P. A. Wolff, Phys. Rev. 124, 1080 (1961).Google Scholar
  99. 99.
    C. Herring, Phys. Rev. 114, 977 (59).CrossRefGoogle Scholar
  100. 100.
    Y. Maeno et al., Nature 372, 532 (1994).CrossRefADSGoogle Scholar
  101. 101.
    T. H. Geballe, G. W. Hull, B. T. Matthias, and E. Corenzwit, PRL 8, 313 (1962).CrossRefADSGoogle Scholar
  102. 102.
    E. Raub et al., J. Less Common Met. 12, 36 (1967).CrossRefGoogle Scholar
  103. 103.
    J. K. Hulm and R. D. Blaugher, Phys. Rev. 123, 1569 (1961).CrossRefADSGoogle Scholar
  104. 104.
    J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986).CrossRefADSGoogle Scholar
  105. 105.
    V. V. Osipov, I. V. Kochev, and S. V. Naumov, JETP 93, 1082 (2001).CrossRefADSGoogle Scholar
  106. 106.
    A. M. Gulian, K. S. Wood, D. Van Vechten, J. Claassen, R. J. Soulen, Jr., S. Qadri, M. Osofsky, A. Lucarelli, G. Luepke, G. R. Badalyan, V. S. Kuzanyan, A. S. Kuzanyan, and V. R. Nikoghosyan, Evidence for High-Temperature Superconductivity in Doped Laser-Processed Sr–Ru–O, cond-mat 0509313.Google Scholar
  107. 107.
    J. T. Chen, L. X. Qian, L. Q. Wang, and L. E. Wenger, in Superconductivity and Applications, H. Kwok et al., eds. (Plenum Press, New York, 1990).Google Scholar
  108. 108.
    S. Reich and Y Tsabba, Eur. Phys. J. B 9, 1.Google Scholar
  109. 109.
    A. Shengelaya, S. Reich, Y. Tsabba, and K. A. Mueller, Eur. Phys. J. B 12, 13 (1999).CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Theodore H. Geballe
    • 1
  1. 1.Department of Applied Physics and Materials ScienceStanford UniversityStanfordUSA

Personalised recommendations