Power Dissipation in Spintronic Devices Out of Thermodynamic Equilibrium

  • Dmitri E. Nikonov
  • George I. Bourianoff
  • Paolo A. Gargini


Quantum limits of power dissipation in spintronic computing are estimated. A computing element composed of a single electron in a quantum dot is considered. Dynamics of its spin due to external magnetic field and interaction with adjacent dots are described via the Bloch equations. Spin relaxation due to magnetic noise from various sources is described as coupling to a reservoir. Resulting dissipation of energy is calculated and is shown to be much less than the thermal limit, ∼kT per bit, if the rate of spin relaxation is much slower than the switching rate. Clues on how to engineer an energy efficient spintronic device are provided.


computation theory heat dissipation quantum theory relaxation processes magnetic noise spintronics 


  1. 1.
    Semiconductor Industry Association. International Roadmap for Semiconductors, chapter Emerging Research Devices (2003). Available at http://public.itrs.net/Files/2003ITRS/Home2003.htm.
  2. 2.
    V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, Proc. IEEE. 91, 1934 (2003).Google Scholar
  3. 3.
    R. Landauer, IBM J. Res. Dev. 5, 183 (1961).Google Scholar
  4. 4.
    S. A. Wolf et al., Science, 294, 1488 (2001).Google Scholar
  5. 5.
    I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).Google Scholar
  6. 6.
    R. P. Feynman, Feynman Lectures on Computation, (Addison Wesley, Reading, MA, 1996).Google Scholar
  7. 7.
    K. K. Likharev, IEEE Trans. Magn 25, 1436 (1989).Google Scholar
  8. 8.
    S. Bandyopadhyay, When it comes to spintronics, there may be some room in the middle, cond-mat 0412519, (2004). Available at http://www.arxiv.org/.
  9. 9.
    J. Timler and C. S. Lent, J. Appl. Phys. 94, 1050 (2003).Google Scholar
  10. 10.
    C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods With Applications to Quantum Optics, (Springer, 2nd edition, 1999), Chapter 3.Google Scholar
  11. 11.
    J. A. Sidles, J. L. Garbini, W. M. Dougherty, and S.-H. Chao, Proc. IEEE. 91, 799 (2003).Google Scholar
  12. 12.
    A. V. Khaetskii and Y. V. Nazarov, ``Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots,'' Phys. Rev. B 64, 125316 (2001).Google Scholar
  13. 13.
    G. Csaba, A. Imre, G. H. Bernstein, W. Porod, and V. Metlushko, IEEE Tran. Nanotechnol. 1, 209 (2002).Google Scholar
  14. 14.
    S. Bandyopadhyay, B. Das, and A. E. Miller, Nanotechnology, 5, 113 (1994).Google Scholar
  15. 15.
    M. C. B. Parish and M. Forshaw, Appl. Phys. Lett. 83, 2046, (2003).Google Scholar
  16. 16.
    N. Margolus and L. B Levitin, Physica D, 120, 188 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Dmitri E. Nikonov
    • 1
  • George I. Bourianoff
    • 1
  • Paolo A. Gargini
    • 1
  1. 1.Technology StrategyTechnology and Manufacturing Group, Intel Corp.Santa ClaraUSA

Personalised recommendations