Microwave and Terahertz Surface Resistance of MgB2 Thin Films

  • B. B. Jin
  • T. Dahm
  • F. Kadlec
  • P. Kuzel
  • A. I. Gubin
  • Eun-Mi Choi
  • Hyun Jung Kim
  • Sung-Ik Lee
  • W. N. Kang
  • S. F. Wang
  • Y. L. Zhou
  • A. V. Pogrebnyakov
  • J. M. Redwing
  • X. X. Xi
  • N. Klein


The knowledge of the surface resistance R s of superconducting thin film at microwave and terahertz (THz) regions is significant to design, make and assess superconducting microwave and THz electronic devices. In this paper we reported the R s of MgB2 films at microwave and THz measured with sapphire resonator technique and the time-domain THz spectroscopy, respectively. Some interesting results are revealed in the following: (1) A clear correlation is found between R s and normal-state resistivity right above T c, ρ0, i.e., R s decreases almost linearly with the decrease of ρ0. (2) A low residual R s, less than 50 μΩ at 18 GHz is achieved by different deposition techniques. In addition, between 10 and 14 K, MgB2 has the lowest R s compared with two other superconductors Nb3Sn and the high-temperature superconductor YBa2Cu3O7−δ(YBCO). (3) From THz measurement it is found that the R s of MgB2 up to around 1 THz is lower than that of copper and YBCO at the temperature below 25 K. (4) The frequency dependence of R s follows ω n , where ω is angular frequency, and n is power index. However, n changes from 1.9 at microwave to 1.5 at THz. The above results clearly give the evidences that MgB2 thin film, compared with other superconductors, is of advantage to make superconducting circuits working in the microwave and THz regions.


ZnTe Coherence Length Power Index Tunneling Junction MgB2 Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).CrossRefADSGoogle Scholar
  2. 2.
    J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, Phys. Rev. Lett. 86, 4656 (2001).CrossRefADSGoogle Scholar
  3. 3.
    H. J. Choi, D. Roundy, Hong Sun, M. L. Cohen, S. G. Louie, Nature 758 (2002).Google Scholar
  4. 4.
    I. I. Mazin, et al., Phys. Rev. Lett. 89, 107002 (2002).CrossRefADSGoogle Scholar
  5. 5.
    T. Dahm and N. Schopohl, Phys. Rev. Lett. 91, 017001 (2003).CrossRefADSGoogle Scholar
  6. 6.
    P. Szabo, et al., Phys. Rev. Lett. 87, 137005 (2001).CrossRefADSGoogle Scholar
  7. 7.
    H. Uchiyama, et al., Phys. Rev. Lett. 88, 157002 (2002).CrossRefADSGoogle Scholar
  8. 8.
    M. A. Hein, High-Temperature Superconductor Thin Films at Microwave Frequency, Vol. 155: Springer Tracts of Modern Physics (Springer, Heidelberg, 1999).Google Scholar
  9. 9.
    T. Van Duzer, and C. W. Tunner, Principle of Superconductive Devices and Circuits, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  10. 10.
    N. Klein, Rep. Prog. Phys. 65, 1387 (2002).CrossRefADSGoogle Scholar
  11. 11.
    A. D. Semenov, G. N. Gol’tsman, and R. Sobolewski, Supercond. Sci. Technol. 15, R1 (2002).CrossRefADSGoogle Scholar
  12. 12.
    B. D. Jackson, T. M. Klapwijk, Physica C 372–376, 368 (2002).CrossRefGoogle Scholar
  13. 13.
    M. Hajenius, et al., Supercond. Sci. Technol. 17, S224 (2004).CrossRefADSGoogle Scholar
  14. 14.
    M. A. Hein, M. Getta, S. Kteiskott, B. Mönter, H. Piel, D. E. Oates, P. J. Hirst, R. G. Humphreys, H. N. Lee, and S. H. Moon, Physica C 372–376, 571 (2002).CrossRefGoogle Scholar
  15. 15.
    M. R. Eskildsen et. al., Phys. Rev. Lett. 89, 187003 (2002).CrossRefADSGoogle Scholar
  16. 16.
    B. B. Jin et. al., Supercond. Sci. Technol. 18, L1 (2005).CrossRefADSGoogle Scholar
  17. 17.
    B. B. Jin, et al., Phys. Rev. B 66, 104521 (2002).CrossRefADSGoogle Scholar
  18. 18.
    A. Andreone, et al., Physica C 372–376, 1287, (2002).CrossRefGoogle Scholar
  19. 19.
    A. A. Zhukov, et al., Appl. Phys. Lett. 80, 2347 (2002).CrossRefADSGoogle Scholar
  20. 20.
    A. J. Purnell, et al., Supercond. Sci. Technol. 16, 1 (2003).CrossRefADSGoogle Scholar
  21. 21.
    A. Andreone, E. Di Gennaro, G. Lamura, F. Chiarella, and R. Vaglio, J. Superconductivity 16, 807 (2003).Google Scholar
  22. 22.
    N. Hakim, C. Kusko, S. Sridhar, A. Soukiassian, X. H. Zeng, and X. X. Xi, Appl. Phys. Lett. 81, 4525 (2002).CrossRefGoogle Scholar
  23. 23.
    G. Lamura, A. J. Purnell, L. F. Cohen, A. Andreone, F. Chiarella, E. Di Gennaro, R. Vaglio, L. Hao, and J. Gallop, Appl. Phys. Lett. 82, 4525 (2003).CrossRefADSGoogle Scholar
  24. 24.
    R. A. Kaindl, M. A. Carnahan, J. Orenstein, D. S. Chemla, H. M. Christen, H. Y. Zhai, M. Paranthaman, and D. H. Lowndes, Phys. Rev. Lett. 88, 027003 (2002).CrossRefADSGoogle Scholar
  25. 25.
    A. V. Pronin, A. Pimenov, A. Loidl, and S. I. Krasnosvobodtsev, Phys. Rev. Lett. 87, 097003 (2001).CrossRefADSGoogle Scholar
  26. 26.
    J. H. Jung, et al., Phys. Rev. B 65, 052413 (2002).CrossRefADSGoogle Scholar
  27. 27.
    M. Kempa, P. Kuzel, S. Kamba, P. Samoukhina, J. Petzelt, A. Grag, and Z. H. Barber, J. Phys.: Cond. Matter 15, 8095 (2003).CrossRefADSGoogle Scholar
  28. 28.
    J. Petzelt, P. Kuzel, I. Rychetsky, A. Pashkin, and T. Ostrapchuk, Ferroelectrics 288, 169 (2003).CrossRefGoogle Scholar
  29. 29.
    S. F. Wang, et al., Thin Solid Film 443, 120 (2003).CrossRefGoogle Scholar
  30. 30.
    W. N. Kang, H.-J. Kim, E.-M. Choi, C. U. Jung, S.-I. Lee, Science 292, 1521–1523 (2001).CrossRefADSGoogle Scholar
  31. 31.
    X. H. Zeng, et al., Nature Mater. 1, 35–38 (2002).CrossRefADSGoogle Scholar
  32. 32.
    N. Klein, N. Tellmann, H. Schulz, K. Urban, S. A. Wolf, and V. Z. Kresin, Phys. Rev. Lett. 71, 3355 (1993).CrossRefADSGoogle Scholar
  33. 33.
    B. B. Jin, et al., Phys. Rev. Lett. 91, 127006 (2003).CrossRefADSGoogle Scholar
  34. 34.
    J. Halbritter, Z. Physik 243, 201 (1971); Z. Physik 266, 209 (1974).CrossRefGoogle Scholar
  35. 35.
    J. Halbritter, Supercond. Sci. Technol. 14, R17 (2003).Google Scholar
  36. 36.
    J. M. Rowell, Supercond. Sci. Technol. 16, R17 (2003).CrossRefADSGoogle Scholar
  37. 37.
    Hyeong-Jin Kim, W. N. Kang, Eun-Mi Choi, Mun-Seog Kim, Kijoon H. P. Kim, and Sung-Ik Lee, Phys. Rev. Lett. 87, 087002 (2001).CrossRefADSGoogle Scholar
  38. 38.
    J. Einfeld, P. Lahl, R. Kutzner, R. Wördenweber, G. Kästner, Physica C 103, (2001).Google Scholar
  39. 39.
    A. N. Luiten, M. E. Tobar, J. Krupka, R. Woode, E. N. Ivanov, and A. G. Mann, J. Phys.D: Appl. Phys. 31, 1383 (1998).CrossRefADSGoogle Scholar
  40. 40.
    I. Wilke, M. Khazan, C. T. Rieck, P. Kuzel, T. Kaiser, C. Jaekel, and H. Kurz, J. Appl. Phys. 87, 2984 (2000).CrossRefADSGoogle Scholar
  41. 41.
    I. Wilke, M. Khazan, C. T. Rieck, P. Kuzel, C. Jaekel, and H. Kurz, Physica C 341-348, 2271 (2000).CrossRefGoogle Scholar
  42. 42.
    J. P. Tuneaure, J. Halbritter, and H. A. Schwettman, J. Supercond. 4, 341 (1991).CrossRefGoogle Scholar
  43. 43.
    T. Dahm, and D. J. Scalapino, Appl. Phys. Lett. 85, 4436 (2004).CrossRefADSGoogle Scholar
  44. 44.
    P. Lahl and R. Wördenweber, Appl. Phys. Lett. 81, 505 (2002).CrossRefADSGoogle Scholar
  45. 45.
    P. Lahl and R. Wördenweber, Supercond. Sci. Technol. 17, S369 (2004).CrossRefADSGoogle Scholar
  46. 46.
    J. Halbritter, J. Supercond. 8, 691 (1995).CrossRefGoogle Scholar
  47. 47.
    T. Dahm, and D. J. Scalapino, Appl. Phys. Lett. 69, 4248 (1996).CrossRefADSGoogle Scholar
  48. 48.
    N. Klein, et al., IEEE Trans. Appl. Supercond. 13, 3252 (2003).CrossRefGoogle Scholar
  49. 49.
    M. Naito, and K. Ueda, Supercond. Sci. Technol. 17, R1 (2004).CrossRefADSGoogle Scholar
  50. 50.
    X. X. Xi, et al., Supercond. Sci. Technol. 17, S196 (2004).CrossRefADSGoogle Scholar
  51. 51.
    H. Ake, J. Appl. Phys. 96, 2343 (2004).ADSGoogle Scholar
  52. 52.
    H. Shimakage, K. Tsujimoto, Z. Wang, and M. Tonouchi, Supercond. Sci. Technol. 17, 1376 (2004).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • B. B. Jin
    • 1
  • T. Dahm
    • 2
  • F. Kadlec
    • 3
  • P. Kuzel
    • 3
  • A. I. Gubin
    • 1
  • Eun-Mi Choi
    • 4
  • Hyun Jung Kim
    • 4
  • Sung-Ik Lee
    • 4
  • W. N. Kang
    • 5
  • S. F. Wang
    • 6
  • Y. L. Zhou
    • 6
  • A. V. Pogrebnyakov
    • 7
    • 8
  • J. M. Redwing
    • 8
  • X. X. Xi
    • 7
    • 8
  • N. Klein
    • 1
  1. 1.Institut für Schichten und Grenzflächen (ISG) and cniCenter of Nanoelectronic Systems for Information TechnologyJülichGermany
  2. 2.Institut für Theoretische PhysikUniversität TübingenTübingenGermany
  3. 3.Institute of Physics, Academy of Sciences of the Czech Rep.Praha 8Czech Republic
  4. 4.National Creative Research Initiative Center for Superconductivity, Department of PhysicsPohang University of Science and TechnologyPohangKorea
  5. 5.Department of PhysicsPukyung National UniversityPusanKorea
  6. 6.Laboratory of Optical PhysicsInstitute of Physics and Center of Condensed Matter Physics, Chinese Academy of ScienceBeijingP. R. China
  7. 7.Department of PhysicsThe Pennsylvania State UniversityUniversity ParkUSA
  8. 8.Department of Material Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations