Journal of Superconductivity

, Volume 18, Issue 2, pp 175–183 | Cite as

Probing Single-Electron Spin Decoherence in Quantum Dots using Charged Excitons

  • O. Gywat
  • H.-A. Engel
  • D. Loss


We propose to use optical detection of magnetic resonance (ODMR) to measure the decoherence time T2 of a single-electron spin in a semiconductor quantum dot. The electron is in one of the spin 1/2 states and a circularly polarized laser can only create an optical excitation for one of the electron spin states due to Pauli blocking. An applied electron spin resonance (ESR) field leads to Rabi spin flips and thus to a modulation of the photoluminescence or, alternatively, of the photocurrent. This allows one to measure the ESR linewidth and the coherent Rabi oscillations, from which the electron spin decoherence can be determined. We study different possible schemes for such an ODMR setup, including cw or pulsed laser excitation.


spin decoherence optically detected magnetic resonance quantum dots charged excitons spin qubits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. D. Awschalom, D. Loss, and N. Samarth, (eds.), Semiconductor Spintronics and Quantum Computation (Series on Nanoscience and Technology, Springer, Berlin, 2002).Google Scholar
  2. 2.
    T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Nature (London) 419, 278 (2002).CrossRefGoogle Scholar
  3. 3.
    R. Hanson, B. Witkamp, L. M. K. Vandersypen, L. H. Willems van Beveren, J. M. Elzerman, and L. P. Kouwenhoven, Phys. Rev. Lett. 91, 196802 (2003).CrossRefPubMedGoogle Scholar
  4. 4.
    J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature (London) 430, 431 (2004).CrossRefGoogle Scholar
  5. 5.
    V. N. Golovach, A. Khaetskii, and D. Loss, Phys. Rev. Lett. 93, 016601 (2004).CrossRefGoogle Scholar
  6. 6.
    N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, Science 282, 1473 (1998).CrossRefPubMedGoogle Scholar
  7. 7.
    J. A. Gupta, D. D. Awschalom, X. Peng, and A. P. Alivisatos, Phys. Rev. B 59, R10421 (1999).CrossRefGoogle Scholar
  8. 8.
    B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, Phys. Rev. B 54, 11532 (1996).CrossRefGoogle Scholar
  9. 9.
    S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J. L. Merz, Phys. Rev. B 54, 11548 (1996).CrossRefGoogle Scholar
  10. 10.
    R. J. Epstein, D. T. Fuchs, W. V. Schoenfeld, P. M. Petroff, and D. D. Awschalom, Appl. Phys. Lett. 78, 733 (2001).CrossRefGoogle Scholar
  11. 11.
    H.-A. Engel and D. Loss, Phys. Rev. Lett. 86, 4648 (2001).CrossRefPubMedGoogle Scholar
  12. 12.
    H.-A. Engel and D. Loss, Phys. Rev. B 65, 195321 (2002).CrossRefGoogle Scholar
  13. 13.
    I. Martin, D. Mozyrsky, and H. W. Jiang, Phys. Rev. Lett. 90, 018301 (2003).CrossRefPubMedGoogle Scholar
  14. 14.
    J. Köhler, J. A. J. M. Disselhorst, M. C. J. M. Donckers, E. J. J. Groenen, J. Schmidt, and W. E. Moerner, Nature (London) 363, 242 (1993).CrossRefGoogle Scholar
  15. 15.
    J. Wrachtrup, C. von Borczyskowski, J. Bernard, M. Orrit, and R. Brown, Nature (London) 363, 244 (1993).CrossRefGoogle Scholar
  16. 16.
    A. Gruber, A. Drábenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. von Borczyskowski, Science 276, 2012 (1997).CrossRefGoogle Scholar
  17. 17.
    F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. 92, 076401 (2004).CrossRefPubMedGoogle Scholar
  18. 18.
    E. Lifshitz, I. Dag, I. D. Litvitn, and G. Hoddes, J. Phys. Chem. B 102 (46), 9245 (1998).CrossRefGoogle Scholar
  19. 19.
    N. Zurauskiene, G. Janssen, E. Goovaerts, A. Bouwen, D. Shoemaker, P. M. Koenraad, and J. H. Wolter, Phys. Stat. Sol. (B) 224, 551 (2001).CrossRefGoogle Scholar
  20. 20.
    O. Gywat, H.-A. Engel, D. Loss, R. J. Epstein, F. M. Mendoza, and D. D. Awschalom, Phys. Rev. B 69, 205303 (2004).CrossRefGoogle Scholar
  21. 21.
    S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J. M. Gérard, and T. Amand, Phys. Rev. Lett. 89, 207401 (2002).CrossRefPubMedGoogle Scholar
  22. 22.
    M. Baier, F. Findeis, A. Zrenner, M. Bichler, and G. Abstreiter, Phys. Rev. B 64, 195326 (2001).CrossRefGoogle Scholar
  23. 23.
    C. Schulhauser, R. J. Warburton, A. Högele, K. Karrai, A. O. Govorov, J. M. Garcia, B. D. Gerardot, and P. M. Petroff, Physica E 21, 184 (2004).Google Scholar
  24. 24.
    M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, Phys. Rev. B 65, 195315 (2002).CrossRefGoogle Scholar
  25. 25.
    J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, and M. Hopkinson, Phys. Rev. B 66, 153316 (2002).CrossRefGoogle Scholar
  26. 26.
    J. G. Tischler, A. S. Bracker, D. Gammon, and D. Park, Phys. Rev. B 66, 081310 (2002).CrossRefGoogle Scholar
  27. 27.
    A. Shabaev, Al. L. Efros, D. Gammon, and I. A. Merkulov, Phys. Rev. B 66, 201305 (2004).Google Scholar
  28. 28.
    Al. L. Efros, Phys. Rev. B 46, 7448 (1992).CrossRefGoogle Scholar
  29. 29.
    Al. L. Efros and A. V. Rodina, Phys. Rev. B 47, 10005 (1993).CrossRefGoogle Scholar
  30. 30.
    M. Fricke, A. Lorke, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, Europhys. Lett. 36, 197 (1996).Google Scholar
  31. 31.
    J. J. Sakurai, Modern Quantum Mechanics, Revised Edition, (Addison-Wesley, Reading, MA, 1995).Google Scholar
  32. 32.
    Y. Kato, R. C. Myers, D. C. Driscoll, A. C. Gossard, J. Levy, and D. D. Awschalom, Science 299, 1201 (2003).CrossRefPubMedGoogle Scholar
  33. 33.
    T. Flissikowski, I. A. Akimov, A. Hundt, and F. Henneberger, Phys. Rev. B 68, R161309 (2003).Google Scholar
  34. 34.
    L. M. Woods, T. L. Reinecke, and R. Kotlyar, Phys. Rev. B 69, 125330 (2004).Google Scholar
  35. 35.
    M. E. Schmidt, S. A. Blanton, M. A. Hines, and P. Guyot-Sionnest, Phys. Rev. B 53, 12629 (1996).Google Scholar
  36. 36.
    A. M. van Oijen, R. Verberk, Y. Durand, J. Schmidt, J. N. J. van Lingen, A. A. van Bol, and A. Meijerink, Appl. Phys. Lett. 79, 830 (2001).Google Scholar
  37. 37.
    A. V. Baranov, Y. Masumoto, K. Inoue, A.V. Fedorov, and A. A. Onushchenko, Phys. Rev. B 55, 15675 (1997).Google Scholar
  38. 38.
    M. Grundmann, N. N. Ledentsov, O. Stier, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 68, 979 (1996).Google Scholar
  39. 39.
    A. Högele, B. Alén, F. Bickel, R. J. Warburton, P. M. Petroff, and K. Karrai, Physica E 21, 175 (2004).Google Scholar
  40. 40.
    F. Findeis, M. Baier, E. Beham, A. Zrenner, and G. Abstreiter, Appl. Phys. Lett. 78, 2958 (2001).Google Scholar
  41. 41.
    A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, Nature (London) 418, 612 (2002).Google Scholar
  42. 42.
    P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoǵlu, Science 290, 2282 (2000).CrossRefPubMedGoogle Scholar
  43. 43.
    V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Björk, Appl. Phys. Lett. 78, 2476 (2001).Google Scholar
  44. 44.
    H. J. Kimble, R. J. Cook, and A. L. Wells, Phys. Rev. A 34, 3190 (1986).PubMedGoogle Scholar
  45. 45.
    J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, Science 292, 2458 (2001).PubMedGoogle Scholar
  46. 46.
    C. E. Pryor and M. E. Flatté (unpublished), quant-ph/0211160.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of BaselBaselSwitzerland

Personalised recommendations