Journal of Superconductivity

, Volume 18, Issue 2, pp 137–144 | Cite as

Spin Dynamics and Spin Transport

  • E. I. RashbaEmail author


Spin-orbit (SO) interaction critically influences electron spin dynamics and spin transport in bulk semiconductors and semiconductor microstructures. This interaction couples electron spin to dc and ac electric fields. Spin coupling to ac electric fields allows efficient spin manipulating by the electric component of electromagnetic field through the electric dipole spin resonance (EDSR) mechanism. Usually, it is much more efficient than the magnetic manipulation due to a larger coupling constant and the easier access to spins at a nanometer scale. The dependence of the EDSR intensity on the magnetic field direction allows measuring the relative strengths of the competing SO coupling mechanisms in quantum wells. Spin coupling to an in-plane electric field is much stronger than to a perpendicular field. Because electron bands in microstructures are spin split by SO interaction, electron spin is not conserved and spin transport in them is controlled by a number of competing parameters, hence, it is rather nontrivial. The relation between spin transport, spin currents, and spin populations is critically discussed. Importance of transients and sharp gradients for generating spin magnetization by electric fields and for ballistic spin transport is clarified.


spin-orbit interaction spin dynamics electric dipole spin resonance spin transport spin magnetization spin currents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).CrossRefPubMedGoogle Scholar
  2. 2.
    J. F. Gregg, I. Petej, E. Jouguelet, and C. Dennis, J. Phys. D: Appl. Phys. 35, R121 (2002).CrossRefGoogle Scholar
  3. 3.
    I. Zutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).CrossRefGoogle Scholar
  4. 4.
    D. D. Awschalom, D. Loss, and N. Samarth, Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).Google Scholar
  5. 5.
    E. I. Rashba, Sov. Phys. -Solid State 2, 1109 (1960).Google Scholar
  6. 6.
    E. I. Rashba and V. I. Sheka, in Landau Level Spectroscopy, G. Landwehr and E. I. Rashba, eds. (North-Holland, Amsterdam, 1991), pp. 131–206.Google Scholar
  7. 7.
    B. D. McCombe, S. G. Bishop, and R. Kaplan, Phys. Rev. Lett. 18, 748 (1967).CrossRefGoogle Scholar
  8. 8.
    M. Dobrowolska, Y. F. Chen, J. K. Furdyna, and S. Rodriguez, Phys. Rev. Lett. 51, 134 (1983).CrossRefGoogle Scholar
  9. 9.
    S. I. Pekar and E. I. Rashba, Sov. Phys. - JETP 20, 1295 (1965).Google Scholar
  10. 10.
    L. S. Khazan, Yu. B. Rubo, and V. I. Sheka, Phys. Rev. B 47, 13180 (1993).CrossRefGoogle Scholar
  11. 11.
    Y. Kato, R. C. Myers, D. C. Driscoll, A. C. Gossard, J. Levy, and D. D. Awschalom, Science 299, 1201 (2003).CrossRefPubMedGoogle Scholar
  12. 12.
    E. I. Rashba and Al. L. Efros, Phys. Rev. Lett. 91, 126405 (2003).CrossRefPubMedGoogle Scholar
  13. 13.
    E. I. Rashba and Al. L. Efros, Appl. Phys. Lett. 83, 5295 (2003).CrossRefGoogle Scholar
  14. 14.
    S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky, Phys. Rev. Lett. 91, 258301 (2003).CrossRefPubMedGoogle Scholar
  15. 15.
    L. P. Rokhinson, V. Larkina, Y. B. Lyanda-Geller, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 93, 146601 (2004).CrossRefPubMedGoogle Scholar
  16. 16.
    E. G. Mishchenko and B. I. Halperin, Phys. Rev. B 68, 045317 (2003).CrossRefGoogle Scholar
  17. 17.
    R. H. Silsbee, J. Phys.: Condens. Matter 16, R179 (2004).CrossRefGoogle Scholar
  18. 18.
    M. Governale, F. Taddei, and R. Fazio, Phys. Rev. B 68, 155324 (2003).CrossRefGoogle Scholar
  19. 19.
    A. G. Mal’shukov, C. S. Tang, C. S. Chu, and K. A. Chao, Phys. Rev. B 68, 233307 (2004).CrossRefGoogle Scholar
  20. 20.
    S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348 (2003).CrossRefPubMedGoogle Scholar
  21. 21.
    J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).CrossRefPubMedGoogle Scholar
  22. 22.
    R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003).Google Scholar
  23. 23.
    Z. Wilamowski, W. Jantsch, H. Malissa, and U. Rössler, Phys. Rev. B 66, 195315 (2002).CrossRefGoogle Scholar
  24. 24.
    V. I. Mel’nikov and E. I. Rashba, Sov. Phys. JETP 34, 1353 (1972).Google Scholar
  25. 25.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford 1999), Sections 6 and 7.Google Scholar
  26. 26.
    S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).CrossRefGoogle Scholar
  27. 27.
    S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. B 69, 235206 (2004).CrossRefGoogle Scholar
  28. 28.
    E. I. Rashba, Phys. Rev. B68, 241315(R) (2003).Google Scholar
  29. 29.
    A. A. Burkov, A. S. Núnes, and A. H. MacDonald, Phys. Rev. B 70, 155308 (2004).CrossRefGoogle Scholar
  30. 30.
    S. I. Erlingsson, J. Schliemann, and D. Loss, Phys. Rev. B 71, 035319 (2005).CrossRefGoogle Scholar
  31. 31.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, New York, 1981), Section 2.Google Scholar
  32. 32.
    W. Zawadzki and P. Pfeffer, Semicond. Sci. Tech. 19, R1–R17 (2003).CrossRefGoogle Scholar
  33. 33.
    E. I. Rashba, Phys. Rev. B 70, 161201(R) (2004).Google Scholar
  34. 34.
    T. P. Pareek, Phys. Rev. Lett. 92, 076601 (2004).CrossRefPubMedGoogle Scholar
  35. 35.
    S. Souma and B. K. Nikolić, Phys. Rev. Lett. 94, 106602 (2005).CrossRefPubMedGoogle Scholar
  36. 36.
    F. Meier and D. Loss, Phys. Rev. Lett. 90, 167204 (2003).CrossRefPubMedGoogle Scholar
  37. 37.
    F. Schütz, P. Kopietz, and M. Kollar, Phys. J. B 41, 557 (2004).CrossRefGoogle Scholar
  38. 38.
    M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 90, 136603 (2003).CrossRefPubMedGoogle Scholar
  39. 39.
    I. E. Dzyaloshnskii, Sov. Phys. JETP 10, 628 (1959).Google Scholar
  40. 40.
    E. L. Ivchenko and G. E. Pikus, JETP Lett. 27, 604 (1978).Google Scholar
  41. 41.
    L. S. Levitov, Yu. N. Nazarov, and G. M. Eliashberg, Sov. Phys. JETP 61, 133 (1985).Google Scholar
  42. 42.
    V. M. Edelstein, Solid State Commun. 73, 233 (1990).CrossRefGoogle Scholar
  43. 43.
    Yu. V. Sharvin, Sov. Phys. JETP 21, 655 (1965).Google Scholar
  44. 44.
    A. Voskoboynikov, S. S. Liu, and C. P. Lee, Phys. Rev. B 59, 12514 (1999).CrossRefGoogle Scholar
  45. 45.
    T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Phys. Rev. Lett. 88, 126601 (2002).CrossRefPubMedGoogle Scholar
  46. 46.
    M. I. D’yakonov and V. I. Perel’, Sov. Phys. - Solid State 13, 3023 (1972).Google Scholar
  47. 47.
    Y. Kato, R. C. Myers, A. C. Gossard, and D. D. Awshalom, Phys. Rev. Lett. 93, 176601 (2004).CrossRefPubMedGoogle Scholar
  48. 48.
    S. D. Ganichev, S. N. Danilov, P. Schneider, V. V. Bel’kov, L. E. Golub, W. Wegscheider, D. Weiss, and W. Prettl, cond-mat/0403641 (2004).Google Scholar
  49. 49.
    J. Schliemann and D. Loss, Phys. Rev. B 69, 165315 (2004).CrossRefGoogle Scholar
  50. 50.
    J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Phys. Rev. B 70, 041303(R) (2004).Google Scholar
  51. 51.
    O. V. Dimitrova, cond-mat/0405339 and cond-mat/0407612 (2004).Google Scholar
  52. 52.
    E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev. Lett. 93, 226602 (2004).CrossRefPubMedGoogle Scholar
  53. 53.
    K. Nomura, J. Sinova, T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. B. 71, 041304 (2005).CrossRefGoogle Scholar
  54. 54.
    O. Chalaev and D. Loss, cond-mat/0407342 (2004).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridge

Personalised recommendations