Journal of Superconductivity

, Volume 18, Issue 3, pp 349–356 | Cite as

Comparison of Performance of n- and p-Type Spin Transistors With Conventional Transistors

  • D. M. Gvozdić
  • U. Ekenberg
  • L. Thylén


A spintronic device that has stimulated much research interest is the Datta–Das spin transistor. The mechanism behind it called the Rashba effect is that an applied voltage gives rise to a spin splitting. We propose ways to optimize this effect. The relevant spin splitting in k-space is predicted to increase with electric field at a rate that is more than two orders of magnitude larger for holes than for electrons. Furthermore, the almost negligible lattice-mismatch between GaAs and AlGaAs can be used to further enhance the advantage of hole-based spin transistors. Compared to present transistors we conclude that electron-based spin transistors will have problems to become competitive but hole-based ones are much more promising.


spintronics transistor quantum well spin splitting hole subband 



We gratefully acknowledge financial support from the Swedish Research Council. We also thank P.-E. Hellström, U. Westergren, and B. Willén for stimulating discussions.


  1. 1.
    D. D. Awschalom, M. E. Flatté, and N. Samarth, Sci. Am. June 2002, p. 52.Google Scholar
  2. 2.
    I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).CrossRefADSGoogle Scholar
  3. 3.
    S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).CrossRefADSGoogle Scholar
  4. 4.
    Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).CrossRefADSGoogle Scholar
  5. 5.
    R. Winkler, Springer Tracts in Modern Physics, Vol. 191 (Springer, Berlin, 2003).Google Scholar
  6. 6.
    R. Winkler, Phys. Rev. B 62, 4245 (2000).CrossRefADSGoogle Scholar
  7. 7.
    M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev. Lett. 56, 2831 (1986).CrossRefADSGoogle Scholar
  8. 8.
    International Technology Roadmap for Semiconductors (ITRS) (2003). available at
  9. 9.
    E. A. de Andrada e Silva, G. C. LaRocca, and F. Bassani, Phys. Rev. B 55, 16293 (1997).CrossRefADSGoogle Scholar
  10. 10.
    O. Mauritz and U. Ekenberg, Phys. Rev. B 55, 10729 (1997).CrossRefADSGoogle Scholar
  11. 11.
    M. Ida, K. Kurishima, and N. Watanabe, IEEE Electron Dev. Lett. 23, 694 (2002).CrossRefGoogle Scholar
  12. 12.
    R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag and L.W. Molenkamp, Nature 402, 787 (1999).CrossRefADSGoogle Scholar
  13. 13.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).CrossRefADSGoogle Scholar
  14. 14.
    S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner and J. D. Budai, Mater. Sci. Eng. R40, 137 (2003); especially Table 1.Google Scholar
  15. 15.
    D. Grundler, Phys. Rev. Lett. 84, 6074 (2000).CrossRefADSGoogle Scholar
  16. 16.
    A. M. Cohen and G. E. Marques, Phys. Rev. B 41, 10608 (1990).CrossRefADSGoogle Scholar
  17. 17.
    M. G. Burt, J. Phys. Condens. Matter 4, 6651 (1992).CrossRefADSGoogle Scholar
  18. 18.
    B. A. Foreman, Phys. Rev. B 48, 4964 (1993).CrossRefADSGoogle Scholar
  19. 19.
    R. Winkler and U. Rössler, Phys. Rev. B 48, 8918 (1993).CrossRefADSGoogle Scholar
  20. 20.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955).MATHCrossRefADSGoogle Scholar
  21. 21.
    M. Silver, W. Batty, A. Ghiti, and E. P. O'Reilly, Phys. Rev. B 46, 6781 (1992).CrossRefADSGoogle Scholar
  22. 22.
    S. J. Papadakis, E. P. De Poortere, H. C. Manoharan, M. Shayegan, and R. Winkler, Science 283, 2056 (1999).CrossRefADSGoogle Scholar
  23. 23.
    R. Winkler, Phys. Rev. B 69, 045317 (2004).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    R. Mattana, J.-M. George, H. Jaffrès, F. Nguyen Van Dau, A. Fert, B. Lépine, A. Guivarc'h and G. Jézéquel, Phys. Rev. Lett. 90, 166601 (2003).CrossRefADSGoogle Scholar
  25. 25.
    S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348 (2003).CrossRefADSGoogle Scholar
  26. 26.
    Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, Nature 402, 790 (1999).CrossRefADSGoogle Scholar
  27. 27.
    E. I. Rashba, Phys. Rev. B 62, R16267 (2000).CrossRefADSGoogle Scholar
  28. 28.
    K. C. Hall, W. H. Lau, K. Gündoğdu, M. E. Flatté, and T. F. Boggess, Appl. Phys. Lett. 83, 2937 (2003).CrossRefADSGoogle Scholar
  29. 29.
    J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).CrossRefADSGoogle Scholar
  30. 30.
    B. Jusserand, D. Richards, G. Allan, C. Priester, and B. Etienne, Phys. Rev. B 51, 4707 (1995).CrossRefADSGoogle Scholar
  31. 31.
    D. Richards, B. Jusserand, G. Allan, C. Priester, and B. Etienne, Solid-State Electronics 40, 127 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • D. M. Gvozdić
    • 1
  • U. Ekenberg
    • 1
  • L. Thylén
    • 1
  1. 1.Department of Microelectronics and Information TechnologyRoyal Institute of TechnologyKistaSweden

Personalised recommendations