Journal of Structural Chemistry

, Volume 51, Issue 2, pp 274–280 | Cite as

Construction of the model radial distribution curves with regard to the features of X-ray diffraction experiment

  • V. P. PakharukovaEmail author
  • É. M. Moroz
  • D. A. Zyuzin


A method to construct model radial distribution functions (RDFs) from the already known structural data is described. The method includes the procedures to calculate termination ripples that always appear on the experimental RDF because of the bounds of the integration limits in the Fourier transformation of the X-ray scattering curve. The introduction of this procedure increases the accuracy of the comparative RDF method used to elucidate the phase composition of nanodispersed materials and to determine the features of the local structure of the phases as compared to their well crystallized analogues. Cerium dioxide samples with different dispersion exemplify the applicability of this method to determine the features of the local structure.


radial distribution of the electron density highly dispersed materials local structure cerium dioxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    É. M. Moroz, Usp. Khim., 61, No. 2, 188 (1992).Google Scholar
  2. 2.
    E. M. Moroz and D. A. Zyuzin, Z. Kristallogr. Suppl., 26, 273 (2007).CrossRefGoogle Scholar
  3. 3.
    É. M. Moroz, “Development of X-Ray Diffraction Methods to Analyze Finely Dispersed Systems. Their Application to the Study of the Structure and Substructure of Oxide and Carbon Carriers and Deposited Metal Catalysts,” Diss. ... Doctor Chem. Sci., Institute of Catalysis, Siberian Division, Russian Academy of Sciences, Novosibirsk (1989).Google Scholar
  4. 4.
    T. Egami in: Local Structure from Diffraction, S. J. L. Billinge and M. F. Thorpe (eds.), Plenum, New York (1998), pp. 1–21.Google Scholar
  5. 5.
    T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Pergamon Press, Oxford (2003).Google Scholar
  6. 6.
    É. M. Moroz, D. A. Zyuzin, and K. I. Shefer, J. Struct. Chem., 48, No. 2, 262–266 (2007).CrossRefGoogle Scholar
  7. 7.
    B. K. Vainshtein, Kristallografiya, 2, No. 1, 29 (1957).Google Scholar
  8. 8.
    É. M. Moroz, D. A. Zyuzin, K. I. Shefer, and L. A. Isupova, J. Struct. Chem., 48, No. 4, 704–707 (2007).CrossRefGoogle Scholar
  9. 9.
    B. E. Warren and R. L. Mozzi, J. Appl. Crystallogr., 8, No. 3, 674 (1975).CrossRefGoogle Scholar
  10. 10.
    M. P. Pechini, Patent №-3.300.697, USA (1967)Google Scholar
  11. 11.
    ICSD-www database. Copyright by Fachinformationszentrum (FIZ), Karlsruhe (2007).Google Scholar
  12. 12.
    S. V. Tsybulya, S. V. Cherepanova, and L. P. Solov’eva, J. Struct. Chem., 37, No. 2, 332 (1996).CrossRefGoogle Scholar
  13. 13.
    D. A. Zyuzin, É. M. Moroz, A. S. Ivanova, et al., Kinet. Katal., 45, 780 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. P. Pakharukova
    • 1
    Email author
  • É. M. Moroz
    • 1
  • D. A. Zyuzin
    • 1
  1. 1.G. K. Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations