Journal of Structural Chemistry

, Volume 50, Issue 5, pp 821–826 | Cite as

DFT-based quantum theoretic QSPR studies of the glass transition temperatures of polyacrylates

  • X. L. YuEmail author
  • W. H. Yu
  • X. Y. Wang


A quantitative structure-property relationship (QSPR) model obtained by using multiple linear stepwise regression analysis, with correlation coefficient R of 0.979 for the training set and 0.951 for the validation set, was developed to predict the glass transition temperature (T g) values of polyacrylates. Three quantum chemical descriptors (the molecular average polarizability α, the entropy S, and the lowest unoccupied molecular orbital E LUMO) obtained directly from polyacrylates monomer structure by density function theory (DFT) calculation, were used to produce the model. The result confirmed the role that quantum chemical descriptors play in studying QSPR of glass transition temperature for polymers.


polyacrylates density function theory glass transition temperature QSPR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bicerano, Encyclopedia of Polymer Science and Technology, Wiley, New York (2003).Google Scholar
  2. 2.
    J. Bicerano, Prediction of Polymers Properties, 3rd edn., Marcel Dekker, New York (2002).Google Scholar
  3. 3.
    D. W. van Krevelen, Properties of Polymers: Their Correlation with Chemical Structure, Their Numerical Estimation, Prediction from Additive Group Contributions, 3rd edn., Elsevier, Amsterdam (1990).Google Scholar
  4. 4.
    J. Hopfinger and M. G. Koehler, J. Polym. Sci. Part B: Polym. Phys., 26, 2007 (1988).CrossRefGoogle Scholar
  5. 5.
    V. O. Toropov, N. L. Kudyshkin, I. N. Voropaeva, et al., J. Struct. Chem., 45, 945 (2004).CrossRefGoogle Scholar
  6. 6.
    M. Yu. Smirnov, A. V. Kalinkin, and V. I. Bukhtiyarov, ibid., 48, 1053 (2007).CrossRefGoogle Scholar
  7. 7.
    R. Katrizky, P. Rachwal, K. W. Law, et al., J. Chem. Inf. Comput. Sci., 36, 879 (1996).Google Scholar
  8. 8.
    R. Katritzky, S. Sild, V. Lobanov, and M. Karlson, ibid., 38, 300 (1998).Google Scholar
  9. 9.
    X. L. Yu, X. Y. Wang, X. B. Li, et al., Macromol. Theory Simul., 15, 94 (2006).CrossRefGoogle Scholar
  10. 10.
    J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook, 4th edn., Wiley-Interscience, New York (1999).Google Scholar
  11. 11.
    A. Afantitis, G. Melagraki, H. Sarimveis, et al., Polymer, 47, 3240 (2006).CrossRefGoogle Scholar
  12. 12.
    E. Mattioni and P. C. Jurs, J. Chem. Inf. Comput. Sci., 42, 232 (2002).Google Scholar
  13. 13.
    R. García-Domenech and J. V. de Julián-Ortiz, J. Phys. Chem. B, 106, 1501 (2002).CrossRefGoogle Scholar
  14. 14.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-03, Revision B.03, Gaussian Inc., Pittsburgh PA (2003).Google Scholar
  15. 15.
    D. Becke, J. Phys. Chem., 98, 5648 (1993).CrossRefGoogle Scholar
  16. 16.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).CrossRefGoogle Scholar
  17. 17.
    A. Golbraikh and A. Tropsha, J. Mol. Grap. Model, 20, 269 (2002).CrossRefGoogle Scholar
  18. 18.
    A. Tropsha, P. Gramatica, and V. K. Gombar, Quant. Struct. Act. Relat. Comb. Sci., 22, 69 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringHunan Institute of EngineeringXiangtan, HunanP.R. China
  2. 2.School of Resource and Environmental ScienceWuhan UniversityWuhan, HubeiP.R. China
  3. 3.College of ChemistryXiangtan UniversityXiangtan, HunanP.R. China

Personalised recommendations