Journal of Structural Chemistry

, Volume 50, Issue 4, pp 741–753 | Cite as

C-F...π, F...H, and F...F intermolecular interactions and F-aggregation: Role in crystal engineering of fluoroorganic compounds

  • T. V. Rybalova
  • I. Yu. Bagryanskaya
Proceedings of the XIV Seminar on Intermolecular Interactions and Molecule Conformations


Systematization of the available literature data on C-F...π, F...H, and F...F interactions, namely, statistical studies of the geometry of the corresponding contacts were carried out using the Cambridge Structural Database (CSD) and theoretical quantum-chemical estimations of their energies. The most typical supramolecular motifs (finite or infinite) involving the F atom were revealed based on recent X-ray studies of a few dozens of fluoroarenes carried out at the Novosibirsk Institute of Organic Chemistry. Our recent data were summarized. To assess the role of the above interactions, we used topological analysis of electron density distribution in terms of Bader’s QTAIM theory. Our DFT/PBE/3z quantum-chemical calculations of the interaction energies of molecular pairs in diazafluorene crystals formed by C-F...π, C-F...H, and F...F nonvalent short contacts are presented.


C-F...π F...H F...F intermolecuar interactions F-aggregation quantum-topological analysis quantum-chemical calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Desiraju, Chem. Commun., 1475 (1997).Google Scholar
  2. 2.
    W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz, et. al., Acta Crystallogr. B, 58, 647 (2002).CrossRefGoogle Scholar
  3. 3.
    J. D. Dunitz and A. Gavezzotti, Cryst. Growth Des., 5, 2180 (2005).CrossRefGoogle Scholar
  4. 4.
    A. Gavezzotti, J. Am. Chem. Soc., 113, 4622 (1991).CrossRefGoogle Scholar
  5. 5.
    J. Marten, W. Seicher, et. al., Cryst. Eng. Commun., 10, 541 (2008).Google Scholar
  6. 6.
    F. Babudri, G. M. Farinola, F. Naso, and R. Ragni, Chem. Commun., 1003 (2007).Google Scholar
  7. 7.
    F. Leroux, P. Jeschke, and M. Schlosser, Chem. Rev., 105, 827 (2005).CrossRefGoogle Scholar
  8. 8.
    P. Kirsch and M. Bremer, Angew. Chem., 112, 4384 (2000).CrossRefGoogle Scholar
  9. 9.
    P. Kirsch and M. Bremer, Angew. Chem., Int. Ed., 39, 4216 (2000).CrossRefGoogle Scholar
  10. 10.
    K. Kanie, K. Mizuno, M. Kuroboshi, et. al., Bull. Chem. Soc. Jpn., 72, 2523 (1999).CrossRefGoogle Scholar
  11. 11.
    S. McLean, A. Ganong, A. Seymour, et. al., Pharm. Exp. Ther., 227, 900; PubMed ID 8627572 (1996).Google Scholar
  12. 12.
    K. Gehmann and R. Nyfeler, Chem. Abstr., 114. 223403 (1991).Google Scholar
  13. 13.
    K. Reichenbacher, I. Heike, H. I. Suss, and J. Jurg Hulliger, Chem. Soc. Rev., 34, 22 (2005).CrossRefGoogle Scholar
  14. 14.
    E. Lork, R. Mews, M. M. Shakirov, et al., Eur. J. Inorg. Chem., 2123 (2001).Google Scholar
  15. 15.
    J. D. Dunitz, A. Gavezzotti, and W. B. Schweizer, Helv. Chim. Acta, 86, 4073 (2003).CrossRefGoogle Scholar
  16. 16.
    F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., 58, 380 (2002).CrossRefGoogle Scholar
  17. 17.
    E. D’Oria and J. J. Novoa, Cryst. Eng. Commun., 10, 423 (2008).Google Scholar
  18. 18.
    R. S. Rowland and R. Taylor, J. Phys. Chem., 100, 7384 (1996).CrossRefGoogle Scholar
  19. 19.
    V. R. Thalladi, H.-Ch. Weiss, D. Bläser, et. al., J. Am. Chem. Soc., 120, 8702 (1998).CrossRefGoogle Scholar
  20. 20.
    G. R. Desiraju, Acc. Chem. Res., 35, 565 (2002).CrossRefGoogle Scholar
  21. 21.
    L. C. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca (1960), p. 449.Google Scholar
  22. 22.
    I. Hyla-Kryspin, G. Haufe, and S. Grimme, Chem. Eur. J., 10, 3411 (2004).CrossRefGoogle Scholar
  23. 23.
    E. Kryachko and S. Scheiner, J. Phys. Chem. A, 108, 2527 (2004).CrossRefGoogle Scholar
  24. 24.
    W. Caminati, S. Melandri, P. Moreschini, and P. G. Favero, Angew. Chem., Int. Ed., 38, 2924 (1999).CrossRefGoogle Scholar
  25. 25.
    J. Parsch and J. W. Engels, J. Am. Chem. Soc., 124, 5664 (2002).CrossRefGoogle Scholar
  26. 26.
    J. A. K. Howard, V. J. Hoy, D. O’Hagan, and G. T. Smith, Tetrahedron., 38, 12613 (1996).CrossRefGoogle Scholar
  27. 27.
    J. D. Dunitz and W. B. Schweizer, Chem. Eur. J., 12, 6804 (2006).CrossRefGoogle Scholar
  28. 28.
    I. Yu. Bagryanskaya, Yu. V. Gatilov, A. M. Maksimov, et. al., J. Fluor. Chem., 126, 1281 (2005).CrossRefGoogle Scholar
  29. 29.
    I. Yu. Bagryanskaya, M. A. Grishina, L. Yu. Safina, et al., J. Struct. Chem., 49, No. 5, 901–908 (2008).CrossRefGoogle Scholar
  30. 30.
    N. Hayashi, T. Mori, and K. Matsumoto, Chem. Commun., 1905 (1998).Google Scholar
  31. 31.
    J. N. Williams, Acc. Chem. Res., 26, 593 (1993).CrossRefGoogle Scholar
  32. 32.
    M. D. Prasana and T. N. Row Guru, Cryst. Eng., 3, 135 (2000).CrossRefGoogle Scholar
  33. 33.
    V. M. Karpov, V. E. PLatonov, I. P. Chuikov, et al., Zh. Org. Khim., 40, No. 3, 448 (2004).Google Scholar
  34. 34.
    S. Lorenzo, G. R. Lewis, and I. Dance, New J. Chem., 24, 295 (2000).CrossRefGoogle Scholar
  35. 35.
    R. F. W. Bader, Atoms in Molecules: Quantum Theory, Clarendon Press, Oxford (1990).Google Scholar
  36. 36.
    R. F. W. Bader, Atoms in Molecules: Quantum Theory, Clarendon Press, Oxford (1990).Google Scholar
  37. 37.
    R. F. W. Bader, Monat. Chem., 136, 819 (2005).CrossRefGoogle Scholar
  38. 38.
    N. Ramasubbu, R. Parthasarathy, and P. Murray-Rust, J. Am. Chem. Soc., 108, 4308 (1986).CrossRefGoogle Scholar
  39. 39.
    A. J. Bondi, Phys. Chem., 68, 441 (1964).CrossRefGoogle Scholar
  40. 40.
    E. V. Bartashevich, M. R. Abdrakhmanova, V. A. Potemkin, and I. Yu. Bagryanskaya, J. Struct. Chem., 47, No. 1, 114–119 (2006).CrossRefGoogle Scholar
  41. 41.
    O. V. Grineva and P. M. Zorkii, Zh. Fiz. Khim., 74, No. 11, 1937 (2000).Google Scholar
  42. 42.
    A. V. Zibarev, Yu. V. Gatilov, and A. O. Miller, Polyhedron, 11, No. 9, 1137 (1992).CrossRefGoogle Scholar
  43. 43.
    I. Yu. Bagryanskaya, Yu. V. Gatilov, A. Yu. Makarov, et al., Heteroatom Chem., 10, No. 2, 113 (1999).CrossRefGoogle Scholar
  44. 44.
    A. Yu. Makarov, I. Yu. Bagryanskaya, F. Van. Blockhuys, et al., Eur. J. Inorg. Chem., No. 1, 77 (2003).Google Scholar
  45. 45.
    A. Yu. Makarov, K. Tersago, K. Nivesanond, et al., Inorg. Chem., 45, 2221 (2006).CrossRefGoogle Scholar
  46. 46.
    C. Knapp, E. Lork, R. Mews, and A. V, Zibarev, Eur. J. Inorg. Chem., 2446 (2004).Google Scholar
  47. 47.
    P. West, J. R. S. Mecozzi, and D. A. Dougherty, J. Phys. Org. Chem., 10, 3479 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.N. N. Vorozhtsov Institute of Organic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations