Advertisement

Journal of Structural Chemistry

, Volume 49, Supplement 1, pp 63–72 | Cite as

Interference effects in 1s → π* resonance excitation processes of the no molecule

  • F. V. DemekhinEmail author
  • D. V. Omel’yanenko
  • V. L. Sukhorukov
  • L. A. Demekhina
  • L. Werner
  • W. Kielich
  • A. Ehresmann
  • H. Schmoranzer
  • K. -H. Schartner
Article

Abstract

A 1Π → X 1Σ+ fluorescence in the NO+ molecular ion observed after Auger decay of the 1s −1 π* resonances of the N*O molecule and NO* was studied theoretically. The energies and probabilities of the transition between the vibrational levels of the electronic states, determining the excitation and Auger decay of the resonances of the nitrogen monoxide molecule and further radiation-induced decay of the NO+ molecular ion were calculated by the first principles method. Multiplet splitting of the resonances of N*O and NO* and interference of the amplitudes of excitation of the molecule through various vibrational levels of the intermediate resonance explain the observed dependences of the intensity of A 1Π(υ′) → X 1Σ+(υ″) fluorescence on the excitation radiation energy. The discrepancies between the calculated and experimental integrated intensities of fluorescence point to the necessity of studying cascade processes determined by radiation transitions in NO+, including dipole transitions with a changed net spin.

Keywords

molecular spectroscopy fluorescence core shell excitation Auger resonance effect interference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Gel’mukhanov and H. Ågren, Phys. Rep., 312, 87–330 (1999).CrossRefGoogle Scholar
  2. 2.
    F. K. Gel’mukhanov, L. N. Mazalov, and A. V. Kondratenko, Chem. Phys. Lett., 46, 133–137 (1977).CrossRefGoogle Scholar
  3. 3.
    M. Neeb, J. E. Rubensson, M. Biermann, et al., J. Electr. Spectr. Relat. Phenom., 67, 261–274 (1994).CrossRefGoogle Scholar
  4. 4.
    H. Wang, R. F. Fink, M. N. Piancastelli, et al., Chem. Phys., 289, 31–44 (2003).CrossRefGoogle Scholar
  5. 5.
    H. Wang, R. F. Fink, M. N. Piancastelli, et al., J. Phys. B.: At. Mol. Opt. Phys., 34, 4417–4426 (2001).CrossRefGoogle Scholar
  6. 6.
    M. N. Piancastelli, M. Neeb, A. Kivimaeki, et al., ibid., 30, 5677–5692 (1997).CrossRefGoogle Scholar
  7. 7.
    A. Marquette, M. Meyer, F. Sirotti, and R. F. Fink, ibid., 32, L325–L333 (1999).CrossRefGoogle Scholar
  8. 8.
    R. Puettner, I. Domingue, T. J. Morgan, et al., Phys. Rev. A, 59, 3415–3423 (1999).CrossRefGoogle Scholar
  9. 9.
    A. Ehresmann, W. Kielich, L. Werner, et al., Eur. Phys. J. D, 45, 235–246 (2007).CrossRefGoogle Scholar
  10. 10.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comp. Chem., 14, 1347–1363 (1993).CrossRefGoogle Scholar
  11. 11.
    T. H. Dunning, J. Chem. Phys., 55, 716–723 (1971).CrossRefGoogle Scholar
  12. 12.
    K. Lee, D. Y. Kim, C. I. Ma, et al., ibid., 100, 8550–8553 (1994).CrossRefGoogle Scholar
  13. 13.
    F. V. Demekhin, V. L. Sukhorukov, L. Werner, et al., Opt. Spektrosk., 102, 372–381 (2007) [F. V. Demekhin, V. L. Sukhorukov, L. Werner, et al., Russ. J. Opt. Spectrosc., 102, 330–340 (2007).]Google Scholar
  14. 14.
    I. I. Sobelman, Introduction into the Theory of Atomic Spectra [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  15. 15.
    R. Fink, J. Chem. Phys., 106, 4038–4052 (1997).CrossRefGoogle Scholar
  16. 16.
    A. Ehresmann, L. Werner, S. Klumpp, et al., J. Phys. B, At. Mol. Opt. Phys., 39, 283–304 (2006).CrossRefGoogle Scholar
  17. 17.
    W. B. Maier II and R. F. Holland, J. Chem. Phys., 54, 2693–2714 (1971).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • F. V. Demekhin
    • 1
    Email author
  • D. V. Omel’yanenko
    • 1
  • V. L. Sukhorukov
    • 1
    • 2
  • L. A. Demekhina
    • 3
  • L. Werner
    • 4
  • W. Kielich
    • 4
  • A. Ehresmann
    • 4
  • H. Schmoranzer
    • 5
  • K. -H. Schartner
    • 6
  1. 1.Rostov State University of CommunicationsRostov-on-DonRussia
  2. 2.Research Institute of PhysicsSouth Federal UniversityRostov-on-DonRussia
  3. 3.Pedagogical InstituteSouth Federal UniversityRostov-on-DonRussia
  4. 4.Institute of PhysicsKassel UniversityKasselGermany
  5. 5.Faculty of PhysicsKaiserslautern UniversityKaiserslauternGermany
  6. 6.First Physical InstituteHissen UniversityHissenGermany

Personalised recommendations