Journal of Structural Chemistry

, Volume 49, Issue 4, pp 581–586 | Cite as

On the mechanism of mechanochemical dimerization of anthracene. Quantum-chemical calculation of the electronic structure of anthracene and its dimer

  • V. M. Tapilin
  • N. N. Bulgakov
  • A. P. Chupakhin
  • A. A. Politov


The electronic structure of anthracene, its dimer, and intermediate structures composed of two anthracene molecules were calculated in the density functional theory. The calculated potential barrier to anthracene dimerization is ∼55 kcal/mol; the dissociation barrier is ∼45 kcal/mol. The pressure required for the reaction to reach the transition state and acting on the anthracene crystal is ∼60 kbar. Lower pressures, ∼10 kbar, are required for molecules to approach each other to distances of ∼3 Å, at which tunnel dimerization is possible for photoexcited molecules.


anthracene dimer electronic structure mechanochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Chandross and J. Ferguson, J. Chem. Phys., 45, 3554–3564 (1966).CrossRefGoogle Scholar
  2. 2.
    J. M. Tomas and J. O. Williams, Progress in Solid State Chemistry, Vol. 6, Pergamon, Oxford (1971), pp. 119–154.Google Scholar
  3. 3.
    J. Ferguson and A. W. Mau, Mol. Phys., 27, 377 (1974).CrossRefGoogle Scholar
  4. 4.
    A. A. Politov, B. A. Fursenko, and V. V. Boldyrev, Dokl. Ross. Akad. Nauk, 371, 59–62 (2000).Google Scholar
  5. 5.
    I. Y. Chan, J. Phys.: Condens. Matter., 14, 11417–11421 (2002).CrossRefGoogle Scholar
  6. 6.
    I. Y. Chan, I. Huzeifa, B. Prass, and D. Stehlik, J. Chem. Phys., 117, 4419–4427 (2002).CrossRefGoogle Scholar
  7. 7.
    A. N. Terenin, Photonics of Dye Molecules [in Russian], Nauka, Leningrad (1967).Google Scholar
  8. 8.
    G. M. I. Shmidt, J. Chem. Phys., 6, 2014–2021 (1964).Google Scholar
  9. 9.
    J. O. Williams and J. M. Tomas, Trans. Faraday. Soc., 63, 1720–1729 (1965).CrossRefGoogle Scholar
  10. 10.
    K. M. Gramaccioli, G. Pilippini, M. Simonetta, et al., J. Chem. Soc. Faraday II, 76, 1336–1346 (1980).CrossRefGoogle Scholar
  11. 11.
    S. Ramdas, G. M. Parkinson, and J. M. Tomas, Nature, 284, 153/154 (1980).CrossRefGoogle Scholar
  12. 12.
    K. Hummer, P. Puschnig, and C. Ambrosch-Draxl, Phys. Rev. B, 67, 184105 (2003).Google Scholar
  13. 13.
    J. M. Moris, Mol. Phys., 84, 1167–1176 (1974).CrossRefGoogle Scholar
  14. 14.
    H. Rydberg, M. Dion, M. Jacobson, et al., Phys. Rev. Lett., 91, 126402–126405 (2003).CrossRefGoogle Scholar
  15. 15.
    P. Hohenberg and W. Kohn, Phys. Rev. B, 136, 864–871 (1964).CrossRefGoogle Scholar
  16. 16.
    W. Kohn and L. J. Sham, Phys. Rev. A, 140, 1133–1138 (1965).CrossRefGoogle Scholar
  17. 17.
    S. Baroni, A. Dal Corso, S. de Gironcoli, et al.,
  18. 18.
    K. A. Abboud, S. H. Simonsen, and R. M. Roberts, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 46, 2494–2499 (1990).CrossRefGoogle Scholar
  19. 19.
    A. A. Politov, A. P. Chupakhin, and N. N. Bulgakov, Abstracts from the 5th Intern. Conf. Mechanochem. Mechanical Alloying, Novosibirsk (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. M. Tapilin
    • 1
  • N. N. Bulgakov
    • 1
  • A. P. Chupakhin
    • 2
  • A. A. Politov
    • 2
    • 3
  1. 1.G. K. Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Solid State Chemistry and Mechanochemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations