Advertisement

Journal of Structural Chemistry

, Volume 48, Issue 5, pp 855–861 | Cite as

Distortion of the tetrahedral coordination of Fe(III) ions stabilized in ZSM-5 zeolite framework

  • S. E. MalykhinEmail author
  • V. F. Anufrienko
  • E. J. M. Hansen
  • E. V. Kuznetsova
  • T. V. Larina
  • G. M. Zhidomirov
Article

Abstract

A simple qualitative method to analyze d-d-electronic transitions in cations of the transition elements in oxide matrices is proposed. In the particular case, all the excited states of interest differ only in the electronic configuration of d-orbitals, and the energies of transitions can be computed via the configuration interaction (CI) method restricted by the active space of five cation d-orbitals. An ordinary cluster model that takes into account the first coordination sphere of transition metal ion consisting of the framework of oxygen ions is sufficient for this purpose. The systematic overestimation error of transition energies can be corrected through the empirical factor calculated to fit experimental UV-VIS spectra. The physical meaning of the scaling factor proposed is the dynamic part of electron correlation that remains unaccounted for in the chosen active CI space. The observed d-d-transitions of Fe3+ ions in MFI zeolites are analyzed in detail. It is suggested that the specifics of the observed electronic spectra are caused by the distortion of the tetrahedron of oxygen atoms around Fe3+. The latter can be easily taken into account when selecting an appropriate Fe3+ cluster model in the framework. It is shown that the occurrence of the weak low-frequency band below 21,000 cm−1 indicates the distortion of the tetrahedral environment around Fe3+.

Keywords

Fe-ZSM-5 zeolite d-d-transitions Fe3+ in tetrahedral coordination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Barrer, Hydrothermal Chemistry of Zeolites, Chapter 6, L. (1982).Google Scholar
  2. 2.
    J. A. Van Bokhoven, M. J. Van der Eerden Ad, and D. C. Koningsberger, J. Am. Chem. Soc., 125, 7435 (2003).CrossRefGoogle Scholar
  3. 3.
    J. A. Van Bokhoven, M. J. Van der Eerden Ad, and R. Prins, ibid., 126, 4506 (2004).CrossRefGoogle Scholar
  4. 4.
    A. P. M. Kentgens, D. Iuga, M. Kalwei, and H. Koller, ibid., 123, 2925 (2001).CrossRefGoogle Scholar
  5. 5.
    P. Ratnasamy and R. Kumar, Catal. Today, 9, No. 4, 329 (1991), and ref. 64 therein: D. Lin and Ph. D. Thesis, No. 126-89 (1989), Univ. Claude Bernard, Lyon, France (1986).CrossRefGoogle Scholar
  6. 6.
    D. Goldfarb, K. G. Strobmaier, D. E. W. Vaughan, et al., J. Am. Chem. Soc., 118, 4665 (1996).CrossRefGoogle Scholar
  7. 7.
    D. H. Lin, G. Coudurier, and J. C. Vedrine, Stud. Surf. Sci. Catal., 49, 1431 (1989).CrossRefGoogle Scholar
  8. 8.
    S. Bordiga, R. Buzzoni, F. Geobaldo, et al., J. Catal., 158, 486 (1996).CrossRefGoogle Scholar
  9. 9.
    A. Meagher, V. Nair, and R. Szostak, Zeolites, 18, 3 (1998).Google Scholar
  10. 10.
    K. Lazar, G. Borbely, and H. Beyer, ibid., 11, 214 (1991).CrossRefGoogle Scholar
  11. 11.
    J. Ivanic and K, Ruedenberg, Theoret. Chem. Acc., 106, 339–351 (2001).Google Scholar
  12. 12.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, 1347–1363 (1993).CrossRefGoogle Scholar
  13. 13.
    P. Pulay and T. P. Hamilton, J. Chem. Phys., 88, No. 8, 4926 (1988).CrossRefGoogle Scholar
  14. 14.
    C. M. Aikens, S. P. Webb, R. L. Bell, et al., Theor. Chem. Acc., 110, 233–253 (2003).Google Scholar
  15. 15.
    M. S. Gordon, M. W. Schmidt, G. M. Chaban, et al., J. Chem. Phys., 110, 4199–4207 (1999).CrossRefGoogle Scholar
  16. 16.
    A. J. H. Wachters, ibid., 52, 1033 (1970).CrossRefGoogle Scholar
  17. 17.
    P. J. Hay, ibid., 66, 4377 (1977).CrossRefGoogle Scholar
  18. 18.
    K. Raghavachari and G. W. Trucks, ibid., 91, 1062 (1989).CrossRefGoogle Scholar
  19. 19.
    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, ibid., 72, 650 (1980).CrossRefGoogle Scholar
  20. 20.
    A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam (1968).Google Scholar
  21. 21.
    D. M. Sherman and T. D. Waite, Am. Mineralogist., 70, 1262 (1985).Google Scholar
  22. 22.
    A. Tuel, I. Arconb, and J. M. M. Millet, J. Chem. Soc., Faraday Trans., 94, 3501–3510 (1998).CrossRefGoogle Scholar
  23. 23.
    C. Calvo, et al., Can. J. Chem., 53, 2064 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. E. Malykhin
    • 1
    Email author
  • V. F. Anufrienko
    • 1
  • E. J. M. Hansen
    • 2
  • E. V. Kuznetsova
    • 1
  • T. V. Larina
    • 1
  • G. M. Zhidomirov
    • 1
  1. 1.G. K. Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirsk
  2. 2.Technical University EindhovenThe Netherlands

Personalised recommendations