Advertisement

Journal of Structural Chemistry

, Volume 47, Issue 2, pp 277–284 | Cite as

On interrelation between the internal pressure and the cohesion energy density

  • V. N. Kartsev
  • K. E. Pankin
  • D. V. Batov
Article

Abstract

The question about the definition of the “internal pressure” concept is being discussed. It is shown that the previously found differential relation between the cohesion energy density and the internal pressure is one of the examples of an absolutely general interrelation between definitely connected differential functions. It is ascertained that the ratio (the internal pressure divided by the cohesion energy density) is a structuresensitive parameter inherent to the calorific (thermal) equation of a liquid state.

Keywords

internal pressure cohesion energy density intermolecular interactions thermal equation of a state structure of liquid state systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Moelwyn-Hughes, Physical Chemistry. 2nd Edition, Pergamon Press (1961).Google Scholar
  2. 2.
    M. R. J. Dack, Austr. J. Chem., 28, 1643–1648 (1975); 29, 771–778; 29, 779–786 (1976).CrossRefGoogle Scholar
  3. 3.
    J. H. Hildebrand, The Solubility of Non-Electrolytes, Reinhold, New York (1936).Google Scholar
  4. 4.
    E. K. Goharshadi and F. Nazari, Fluid Phase Equilibria, 187/188, 425–431 (2001).CrossRefGoogle Scholar
  5. 5.
    S. Ravi, M. Kalidoss, R. Srinivasamoorthy, and A. Jame, ibid., 178, 33–44.Google Scholar
  6. 6.
    E. V. Ivanov and V. K. Abrosimov, in: Biologically Active Substances in Solutions: Structure, Thermodynamics, Reaction Ability [in Russian], A. M. Kutepov (ed.), Nauka, Moscow (2001), pp. 110–183.Google Scholar
  7. 7.
    V. N. Kartsev, M. N. Rodnikova, J. Bartel, and S. N. Shtykov, Zh. Fiz. Khim., 76, No. 6, 1016–1018 (2002).Google Scholar
  8. 8.
    V. N. Kartsev, M. N. Rodnikova, S. N. Shtykov, and J. Bartel, ibid., 77, No. 8, 1456–1463 (2003).Google Scholar
  9. 9.
    V. N. Kartsev, M. N. Rodnikova, and S. N. Shtykov, Zh. Strukt. Khim., 45, No. 1, 94–98 (2004).Google Scholar
  10. 10.
    V. N. Kartsev, M. N. Rodnikova, and S. N. Shtykov, ibid., 99–102.Google Scholar
  11. 11.
    V. N. Kartsev, ibid., No. 5, 877–882.Google Scholar
  12. 12.
    V. P. Belousov and M. Yu. Panov, Thermodynamics of Aqueous Solutions of Non Electrolytes [in Russian], Chemistry, Leningrad (1983).Google Scholar
  13. 13.
    A. M. Kolker, V. P. Korolev, and D. V. Batov, Zh. Strukt. Khim., 46, No. 5, 959–962 (2005).Google Scholar
  14. 14.
    A. I. Rusanov and V. V. Krotov, Kolloidnyi Zh., 38, No. 1, 191–194 (1976).Google Scholar
  15. 15.
    The Encyclopedia of Polymers. V. 1 [in Russian], Sovetskaja Entsikl., Moscow (1972).Google Scholar
  16. 16.
    I. G. Kaplan, Introduction to the Theory of Intermolecular Interactions [in Russian], Nauka, Moscow (1982).Google Scholar
  17. 17.
    M. V. Vol’kenstein, Molecular Biophysics [in Russian], Nauka, Moscow (1975).Google Scholar
  18. 18.
    I. P. Bazarov, É. V. Gevorkjan, and P. N. Nikolaev, Thermodynamics and Statistical Physics (the theory of equilibrium systems) [in Russian], Izd. Mosk. Gos. Univ., Moscow (1986).Google Scholar
  19. 19.
    R. A. Fine and F. J. Millero, J. Chem. Phys., 59, No. 10, 5529–5536 (1973).CrossRefGoogle Scholar
  20. 20.
    V. N. Kartsev, V. V. Tsepulin, and N. S. Shtykova, Zh. Fiz. Khim., 74, No. 12, 2158–2161 (2000).Google Scholar
  21. 21.
    N. B. Vargaftik, Handbook on Thermo Physical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).Google Scholar
  22. 22.
    H. I. Amirkhanov, G. V. Stepanov, and B. G. Alibekov, Isohoric Heat Capacity of Water and Water Vapour [in Russian] the Printing house of Dagestan branch of the USSR Acad. Sci., Makhachkala (1969).Google Scholar
  23. 23.
    H. I. Amirkhanov, G. V. Stepanov, I. M. Abdulagatov, and O. A. Bui, Isohoric Heat Capacity of Propyl-and Isopropyl Alcohols [in Russian] the Printing house of Dagestan branch of the USSR Acad. Sci., Makhachkala (1989).Google Scholar
  24. 24.
    Yu. A. Neruchev and V. V. Zotov, Ultrasound and Phys. Chem. Properties of Substance [in Russian], Kursk Pedagogical Institute, Kursk, 176, No. 11, 7–17 (1977).Google Scholar
  25. 25.
    L. N. Zavarykina, V. V. Zotov, and Yu. A. Neruchev, ibid., 184, No. 12, 7–21 (1978).Google Scholar
  26. 26.
    N. B. Vargaftik, Handbook on Thermo Physical Properties of Gases and Liquids [in Russian] Publishing house of phys.-math. literature, Moscow (1963).Google Scholar
  27. 27.
    R. Reid and T. Sherwood, Properties of Gases and Liquids, McGraw-Hill, New York (1958).Google Scholar
  28. 28.
    V. N. Kartsev, M. N. Rodnikova, V. V. Tsepulin, et al., Zh. Strukt. Khim., 27, No. 4, 187–189 (1986).Google Scholar
  29. 29.
    V. V. Zotov and Yu. S. Shoitov, Ultrasound and Phys. Chem. Properties of Substance [in Russian], Kursk pedagogical institute, Kursk, 71, No. 4, 92–97 (1970).Google Scholar
  30. 30.
    V. N. Kartsev, M. N. Buslaeva, V. V. Tsepulin, and K. T. Dudnikova, Zh. Fiz. Khim., 58, No. 11, 2687–2691 (1984).Google Scholar
  31. 31.
    V. N. Kartsev, O. Ya. Samojlov, and V. A. Zabelin, ibid., 53, No. 3, 757–759 (1979).Google Scholar
  32. 32.
    M. N. Rodnikova, ibid., 67, No. 2, 275–280 (1993).Google Scholar
  33. 33.
    A. F. Skryshevskii, Structural Analysis of Liquids and Amorphous State [in Russian], Vyssh. Shkola, Moscow (1980).Google Scholar
  34. 34.
    A. K. Dorosh, Structure of Condensed Systems [in Russian], Vyssh. Shkola, Lvov (1981).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. N. Kartsev
    • 1
  • K. E. Pankin
    • 1
  • D. V. Batov
    • 2
  1. 1.Saratov State UniversityRussia
  2. 2.Institute of Solution ChemistryRussian Academy of SciencesIvanovo

Personalised recommendations