Journal of Structural Chemistry

, Volume 47, Issue 2, pp 232–240 | Cite as

Ab initio vibrational analysis of hexafluoroethane C2F6

  • G. R. De Maré
  • Yu. N. Panchenko
Article

Abstract

Quantum mechanical geometry optimizations and the calculation of vibrational frequencies of hexafluoroethane have been performed at the HF/6-31G*, MP2/6-31G*, CCSD/cc-pVDZ, and B3LYP/6-31G* levels. The force fields obtained were scaled. The necessity is stressed of carrying out the detailed analysis of the vibrational spectra of small reference molecules to determine sets of scale factors which are transferable to quantum mechanical force fields of large molecules for the purpose of predicting their vibrational spectra.

Keywords

hexafluoroethane quantum mechanical molecular force field scale factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. De Maré, Yu. N. Panchenko, and J. Vander Auwera, J. Phys. Chem. A, 101, 3998–4004 (1997).CrossRefGoogle Scholar
  2. 2.
    Yu. N. Panchenko, J. Vander Auwera, Ya. Moussaoui, and G. R. De Maré, Struct Chem., 14, 337–348 (2003).CrossRefGoogle Scholar
  3. 3.
    I. A. Godunov, A. V. Abramenkov, and N. N. Yakovlev, J. Struct. Chem., 39, 947–961 (1998).CrossRefGoogle Scholar
  4. 4.
    V. A. Bataev, V. I. Pupyshev, A. V. Abramenkov, and I. A. Godunov, Russ J. Phys. Chem., 74,Suppl. 2, S279–S291 (2000).Google Scholar
  5. 5.
    M. V. Vol’kenshtein, M. A. El’yashevich, and B. I. Stepanov, Vibrations of Molecules [in Russian], Vol. 1. Gostekhizdat, Moscow (1949).Google Scholar
  6. 6.
    E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York-London-Toronto (1955).Google Scholar
  7. 7.
    S. J. Cyvin, Molecular Vibrations and Mean Square Amplitudes, Universitetforlaget, Oslo (1968).Google Scholar
  8. 8.
    W. J. Hehre, L. Radom, V. R. P. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York (1986).Google Scholar
  9. 9.
    Yu. N. Panchenko, Russ. Chem. Bull., 45, 753–760 (1996).CrossRefGoogle Scholar
  10. 10.
    Yu. N. Panchenko, J. Mol. Struct., 567/568, 217–230 (2001).CrossRefGoogle Scholar
  11. 11.
    Yu. N. Panchenko, G. R. De Maré, and N. F. Stepanov, ibid., 348, 413–416 (1995).CrossRefGoogle Scholar
  12. 12.
    Ch. W. Bock, Yu. N. Panchenko, S. V. Krasnoshchiokov, and V. I. Pupyshev, ibid., 129, 57–67 (1985).CrossRefGoogle Scholar
  13. 13.
    Yu. N. Panchenko, S. V. Krasnoshchiokov, Ph. George, and Ch. W. Bock, Struct. Chem., 3, 15–26 (1992).CrossRefGoogle Scholar
  14. 14.
    Yu. N. Panchenko and Ch. W. Bock, ibid., 3, 27–35 (1992).CrossRefGoogle Scholar
  15. 15.
    Yu. N. Panchenko, G. R. De Maré, R. Aroca, and Ch. W. Bock, ibid., 11, 121–140 (2000).CrossRefGoogle Scholar
  16. 16.
    Yu. N. Panchenko and G. R. De Maré, Spectrochim. Acta, 59A, 329–334 (2003).Google Scholar
  17. 17.
    Yu. N. Panchenko, G. R. De Maré, A. V. Abramenkov, et al., ibid., 2087–2098.Google Scholar
  18. 18.
    G. R. De Maré, Yu. N. Panchenko, A. V. Abramenkov, et al., ibid., 2063–2072.Google Scholar
  19. 19.
    Yu. N. Panchenko, G. R. De Maré, A. V. Abramenkov, et al., ibid., 1733–1744.Google Scholar
  20. 20.
    G. R. De Maré, Yu. N. Panchenko, A. V. Abramenkov, et al., ibid., 60A, 519–526 (2004).Google Scholar
  21. 21.
    Yu. N. Panchenko, G. R. De Maré, A. V. Abramenkov, A. de Meijere, ibid., 62A, in press (2006).Google Scholar
  22. 22.
    Yu. N. Panchenko, G. R. De Maré, A. V. Abramenkov, A. de Meijere, ibid., 62A, in press (2006).Google Scholar
  23. 23.
    D. H. Rank and E. L. Pace, J. Chem. Phys., 15, 39/40 (1947).CrossRefGoogle Scholar
  24. 24.
    J. R. Nielsen, C. M. Richards, and H. L. McMurry, ibid., 16, 67–73 (1948).CrossRefGoogle Scholar
  25. 25.
    E. L. Pace and J. G. Aston, J. Am. Chem. Soc., 70, 566–570 (1948).CrossRefGoogle Scholar
  26. 26.
    J. Barcelo, J. Research Natl. Bur. Standards, 44, 521–525 (1950).Google Scholar
  27. 27.
    R. A. Carney, E. A. Piotrowski, A. G. Meister, et. al., J. Mol. Spectroscop., 7, 209–222 (1961).CrossRefGoogle Scholar
  28. 28.
    T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Vol. I, NSRDS-NBS 39, Washington D.C. (1972).Google Scholar
  29. 29.
    A. Lewis and E. L. Pace, J. Chem. Phys., 58, 3661–3668 (1973).CrossRefGoogle Scholar
  30. 30.
    D. E. Mann and E. K. Plyler, ibid., 21, 1116/1117 (1953).CrossRefGoogle Scholar
  31. 31.
    K. M. Ward, G. Duxbury, M. Lorono, et al., J. Mol. Spectroscop., 204, 268–274 (2000).CrossRefGoogle Scholar
  32. 32.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh PA (2003).Google Scholar
  33. 33.
    M. M. Francl, W. J. Pietro, W. J. Hehre, et al., J. Chem. Phys., 77, 3654–3665 (1982).CrossRefGoogle Scholar
  34. 34.
    C. C. J. Roothan, Rev. Mod. Phys., 23, 69–89 (1951).CrossRefGoogle Scholar
  35. 35.
    C. Möller and M. S. Plesset, Rev. Phys., 46, 618–622 (1934).CrossRefGoogle Scholar
  36. 36.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).CrossRefGoogle Scholar
  37. 37.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev., B37, 785–789 (1988).Google Scholar
  38. 38.
    M. Urban, J. Noga, S. Cole, and R. J. Bartlett, J. Chem. Phys., 83, 4041–4046 (1985).CrossRefGoogle Scholar
  39. 39. a.
    E. R. Davidson, Chem. Phys. Lett., 260, 514–518 (1996). b. A. K Wilson, T. van Mourik, T. H. Dunning, and Jr., J. Mol. Struct. Theochem., 388, 339–349 (1996) (and references cited therein).CrossRefGoogle Scholar
  40. 40.
    D. A. Swick and I. L. Karle, J. Chem. Phys., 23, 1499–1504 (1955).CrossRefGoogle Scholar
  41. 41.
    K. L. Gallaher, A. Yokozeki, and S. H. Bauer, J. Phys. Chem., 78, 2389–2395 (1974).CrossRefGoogle Scholar
  42. 42.
    D. L. Cooper, N. L. Allan, and R. L. Powell, J. Fluor. Chem., 46, 317–337 (1990).CrossRefGoogle Scholar
  43. 43.
    G. M. Kuramshina, F. Weinhold, I. V. Kochikov, et al., Russ. J. Phys. Chem., 68, 358–370 (1994).Google Scholar
  44. 44.
    T. H. Dunning and P. J. Hay, in: Modern Theoretical Chemistry, H. H. Schaefer (ed.), Vol. 3, Plenum, New York (1977).Google Scholar
  45. 45.
    G. M. Hansford and P. B. Davies, J. Mol. Spectroscop., 180, 345–354 (1996).CrossRefGoogle Scholar
  46. 46.
    T. Nakanaga, F. Ito, J. Miyawaki, K. Sugawara, et al., ibid., 178, 40–44 (1999).CrossRefGoogle Scholar
  47. 47.
    J. R. Nielsen and C. W. Gullikson, J. Chem. Phys., 21, 1416 (1953).CrossRefGoogle Scholar
  48. 48.
    I. M. Mills, W. B. Person, J. R. Scherer, et al., ibid., 28, 851–853 (1958).CrossRefGoogle Scholar
  49. 49.
    T. Ziegler, Chem. Rev., 91, 651–667 (1991).CrossRefGoogle Scholar
  50. 50.
    A. Bérces and T. Ziegler, J. Chem. Phys., 98, 4793–4804 (1993).CrossRefGoogle Scholar
  51. 51.
    G. Rauhut and P. Pulay, J.Phys. Chem., 99, 3093–3100 (1995).CrossRefGoogle Scholar
  52. 52.
    X. Zhou, C. J. M. Wheelees, and R. Liu, Vibr. Spectroscop., 12, 53–63 (1996).CrossRefGoogle Scholar
  53. 53.
    A. P. Scott and L. Radom, J. Phys. Chem., 100, 16502–16513 (1996).Google Scholar
  54. 54.
    V. I. Pupyshev, Yu. N. Panchenko, Ch. W. Bock, and G. Pongor, J. Chem. Phys., 94, 1247–1252 (1991).CrossRefGoogle Scholar
  55. 55.
    Yu. N. Panchenko, V. I. Pupyshev, and Ch. W. Bock, J. Mol. Struct., 550/551, 495–504 (2000).CrossRefGoogle Scholar
  56. 56.
    S. H. Chough, Yu. N. Panchenko, and Ch. W. Bock, ibid., 272, 179–186 (1992).CrossRefGoogle Scholar
  57. 57.
    Yu. N. Panchenko, G. R. De Maré, and N. F. Stepanov, Russ. J. Phys. Chem., 74,Suppl. 2, 245–252 (2000).Google Scholar
  58. 58.
    Yu. N. Panchenko and G. R. De Maré, J. Mol. Struct., 611, 147–154 (2002).CrossRefGoogle Scholar
  59. 59.
    Yu. N. Panchenko and G. R. De Maré, Moscow Univ. Chem. Bull., 60, 3–18 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • G. R. De Maré
    • 1
  • Yu. N. Panchenko
    • 2
  1. 1.Brussels Free UniversityBelgium
  2. 2.M. V. Lomonosov Moscow State UniversityRussia

Personalised recommendations