Advertisement

Journal of Structural Chemistry

, Volume 46, Issue 4, pp 577–590 | Cite as

Modeling the active centers of V2O5/SiO2 and V2O5/TiO2 supported catalysts. DFT theoretical analysis of optical properties

  • V. I. Avdeev
  • G. M. Zhidomirov
Article

Abstract

Within the framework of the density functional theory (DFT), the electronic structure of monooxodioxovanadium functional groups in tetrahedral coordination, which model the active centers (ACs) of fine supported catalysts V2O5/SiO2 and V2O5/TiO2, has been analyzed. The optimal structures of three ACs as possible models of monomeric and polymeric oxovanadium forms on the carriers with low vanadium content were determined. The modified DFT method involving the time dependence of Kohn-Sham equation (TDDFT) was used for the adopted AC models to calculate the energies of the excited states, and optical spectra of the absorption in 25000–60000 cm−1 region were reconstructed on their base. The spectrum in this region is due to O → V charge transfer. The features of electronic spectra with the charge transfer for V2O5/SiO2 and V2O5/TiO2 catalysts and the vibrational spectra of three AC models corresponding to the monomeric and dimeric oxovanadium forms of the supported catalysts V2O5/SiO2 and V2O5/TiO2 were defined. The detailed interpretation of normal vibration frequencies is given. The frequencies typical of the monomeric and dimeric oxovanadium forms on the carrier surface were identified.

Keywords

V2O5/SiO2 V2O5/TiO2 active centers (ACs) density functional theory (DFT) spectra with charge transfer IR spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. H. Kung, Adv. Catal., 1, 40–75 (1994).Google Scholar
  2. 2.
    G. T. Went, S. T. Oyama, and A. T. Bell, J. Phys. Chem., 4, 4240–4246 (1990).CrossRefGoogle Scholar
  3. 3.
    N.Y. Topsøe, J. Catal., 128, 499–512 (1991).CrossRefGoogle Scholar
  4. 4.
    H. K. Matralis, M. Ciardelli, M. Ruwet, and P. Grange, ibid., 157, 368–380 (1995).CrossRefGoogle Scholar
  5. 5.
    N. Y. Topsøe, H. Topsøe, and J. A. Dumesic, ibid., 151, 226–240.Google Scholar
  6. 6.
    L. J. Alemany, L. Lietti, N. Ferlazzo, et al., ibid., 155, 117–130.Google Scholar
  7. 7.
    M. D. Amiridis, I. E. Wachs, G. Deo, et al., ibid., 161, 247–260 (1996).CrossRefGoogle Scholar
  8. 8.
    B. M. Reddy, L. Ganesh, and B. Chowdhury, Catal. Today, 49, 115–130 (1999).CrossRefGoogle Scholar
  9. 9.
    G. T. Went, L. J. Leu, and A. T. Bell, J. Catal., 134, 479–495 (1992).CrossRefGoogle Scholar
  10. 10.
    R. Y. Saleh, I. E. Wachs, S. S. Chan, and C. C. Chersich, ibid., 98, 102–112 (1986).CrossRefGoogle Scholar
  11. 11.
    L. R. L. Coustumer, B. Taouk, M. L. Meur, et al., J. Phys. Chem., 92, 1230–1240 (1988).CrossRefGoogle Scholar
  12. 12.
    S. T. Oyama, G. T. Went, K. B. Lewis, et al., ibid., 93, 6786–6798 (1983).CrossRefGoogle Scholar
  13. 13.
    M. A. Vuurman, I. E. Wachs, and A. M. Hirt, ibid., 95, 9928–9942 (1991).CrossRefGoogle Scholar
  14. 14.
    D. C. M. Dutoit, M. A. Reiche, and A. Baiker, Appl. Catal. B., 13, 275–290 (1997).CrossRefGoogle Scholar
  15. 15.
    A. Khodakov, B. Olthof, A. T. Bell., and E. Iglesia, J. Catal., 181, 205–214 (1999).CrossRefGoogle Scholar
  16. 16.
    I. E. Wachs, G. Deo, B. M. Weckhuysen, et al., ibid., 161, 211–224.Google Scholar
  17. 17.
    D. A. Bulushev, L. Kiwi-Minsker, V. I. Zaikovskii, and A. Renken, ibid., 193, 145–159 (2000).Google Scholar
  18. 18.
    G. Lischke, W. Hanke, H.G. Jerschkewitz, and G. Öhlmann, ibid., 91, 54–65 (1985).Google Scholar
  19. 19.
    M. Schraml-Marth, A. Wokaun, A. Baiker, ibid., 124, 86–101 (1990).Google Scholar
  20. 20.
    J. G. Eon, R. Olier, and J. C. Volta, ibid., 145, 318–335 (1994).Google Scholar
  21. 21.
    P. Concepción, J. M. López Nieto, and J. Pérez-Pariente, J. Mol. Catal. A., 99, 173–190 (1995).CrossRefGoogle Scholar
  22. 22.
    K. Wada, H. Yamada, Y. Watabe, and T. Mitsudo, J. Chem. Soc., Faraday Trans., 94, 5852–5870 (1998).CrossRefGoogle Scholar
  23. 23.
    V. Ermini, E. Finocchio, S. Sechi, et al., Appl. Catal. A., 198, 67–84 (2000).CrossRefGoogle Scholar
  24. 24.
    X. Gao and I. E. Wachs, J. Catal., 192, 18–25 (2000).CrossRefGoogle Scholar
  25. 25.
    X. Gao and I. E. Wachs, J. Phys. Chem. B., 104, 1261–1275 (2000).CrossRefGoogle Scholar
  26. 26.
    X. Gao, M. A. Banares, and I. E. Wachs, J. Catal., 188, 325–331 (1999).CrossRefGoogle Scholar
  27. 27.
    L. J. Burcham, G. Deo, X. Gao, and I. E. Wachs, Topics Catal., 11/12, 85–100 (2000).CrossRefGoogle Scholar
  28. 28.
    I. E. Wachs, Chem. Eng. Sci., 45, 2561–2574 (1990).CrossRefGoogle Scholar
  29. 29.
    R. Kozlowski, R. F. Pettifer, and J. M. Thomas, J. Phys. Chem., 87, 5176–5190 (1983).CrossRefGoogle Scholar
  30. 30.
    J. Haber, A. Kozlowska, and R. Kozlowski, J. Catal., 102, 52–65 (1986).CrossRefGoogle Scholar
  31. 31.
    T. Carlson and G. L. Griffin, J. Phys. Chem., 90, 5896–5905 (1986).CrossRefGoogle Scholar
  32. 32.
    J. C. Vedrine, Catal. Today, 56, 455–470 (2000).Google Scholar
  33. 33.
    R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).Google Scholar
  34. 34.
    M. E. Casida, Recent Developments and Applications of Modern Density Functional Theory, Theoretical and Computational Chemistry, Elsevier, Amsterdam (1996).Google Scholar
  35. 35.
    E. Runge and E. K. U. Gross, Phys. Rev. Lett., 52, 997–1000 (1984).CrossRefGoogle Scholar
  36. 36.
    R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 256, 454–464 (1996).CrossRefGoogle Scholar
  37. 37.
    C. Jamorski, M. E. Casida, and D. R. Salahub, J. Chem. Phys., 104, 5134–5147 (1996).CrossRefGoogle Scholar
  38. 38.
    A. Gorling, H. H. Heinze, S. F. Ruzankin, et al., ibid., 110, 2785–2799 (1999).CrossRefGoogle Scholar
  39. 39.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian, Revision A. 11, Gaussian, Inc. Pittsburgh PA (2001).Google Scholar
  40. 40.
    A. D. Becke, Phys. Rev., A33, 2786–2797 (1986).Google Scholar
  41. 41.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).CrossRefGoogle Scholar
  42. 42.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B., 37, 785–797 (1988).CrossRefGoogle Scholar
  43. 43.
    W. Stevens, H. Bash, and J. Krauss, J. Chem. Phys., 81, 6026–6035 (1984).CrossRefGoogle Scholar
  44. 44.
    T. R. Cundari and W. J. Stevens, ibid., 98, 5555–5567 (1993).CrossRefGoogle Scholar
  45. 45.
    E. P. Mikheeva, N. A. Kachurovskaya, and G. M. Zhidomirov, Kinetika Kataliz, 43, 245–255 (2002).Google Scholar
  46. 46.
    Y. M. Liu, Y. Cao, N. Yi, et al., J. Catal., 224, 417–428 (2004).CrossRefGoogle Scholar
  47. 47.
    A. P.B. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York (1968–1984).Google Scholar
  48. 48.
    V. I. Avdeev and G. M. Zhidomirov, Res. Chem. Intermed., 30, 41–60 (2004).CrossRefGoogle Scholar
  49. 49.
    A. Muller, E. Diemann, and A. C. Ranade, Chem. Phys. Letts., 3, 467–470 (1969).CrossRefGoogle Scholar
  50. 50.
    EUROCAT., Catal. Today, 20, 61–76 (1994).CrossRefGoogle Scholar
  51. 51.
    A. P. Scott and L. Radom, J. Phys. Chem., 100, 16502–16510 (1996).Google Scholar
  52. 52.
    H. Garcia, J. M. Lopez Nieto, E. Palomares, and B. Solsona, Catal. Letts., 69, 217–221 (2000).CrossRefGoogle Scholar
  53. 53.
    M. Mathieu, P. Van Der Voort, B. M. Weckhuysen, et al., J. Phys. Chem., B105, 3393–3402 (2001).Google Scholar
  54. 54.
    S. Dzwigaj, M. Peltre, J. P. Massiani, et al., J. Chem. Soc., Chem. Commun., 1, 87/88 (1998).Google Scholar
  55. 55.
    S. Dzwigaj, M. Matsuoka, R. Franck, et al., J. Phys. Chem. B., 102, 6309–6312 (1998).CrossRefGoogle Scholar
  56. 56.
    S. Higashimoto, M. Matsuoka, H. Yamashita, et al., ibid., 104, 10288–10292 (2000).Google Scholar
  57. 57.
    F. Gilardoni, J. Weber, and A. Baiker, J. Phys. Chem. A, 101, 6069–6080 (1997).CrossRefGoogle Scholar
  58. 58.
    N. A. Kachurovskaya, E. P. Mikheeva, and G. M. Zhidomirov, J. Molec. Catal. A, 178, 191–198 (2002).CrossRefGoogle Scholar
  59. 59.
    G. Ramis, G. Busca, and Y. G. Li, Catal. Today, 28, 373–380 (1996).CrossRefGoogle Scholar
  60. 60.
    V. Yu. Borovkov, E. P. Mikheeva, G. M. Zhidomirov, and O. B. Lapina, Kinetika Kataliz, 44, 774–783 (2003).Google Scholar
  61. 61.
    P. C. Stair and C. Li, J. Vac. Sci. Technol. A, 15, 1679–1690 (1997).CrossRefGoogle Scholar
  62. 62.
    G. Xiong, C. Li, H. Li, et al., Chem. Commun., 677/678 (2000).Google Scholar
  63. 63.
    C. B. Wang, R. G. Herman, C. Shi, and J. E. Roberts, Appl. Catal. A: General, 247, 321–333 (2003).CrossRefGoogle Scholar
  64. 64.
    Z. Zhao, Y. Yamada, A. Ueda, et al., Catal. Today, 93-95, 163–171 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. I. Avdeev
    • 1
  • G. M. Zhidomirov
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations