Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 6, pp 581–589 | Cite as

Ultraviolet Laser Patterning of Fluorine-Doped Tin Oxide with Different Radiation Directions

  • Huan Yang
  • Yu Cao
  • Wei Xue
  • Wenwen LiuEmail author
Article
  • 5 Downloads

Abstract

Selective laser patterning of thin films in a multilayered structure is an emerging technology for fabricating optoelectronics and microelectronics devices. As the application of ultraviolet (UV) lasers is more and more popular in electronics manufacturing, in this study, we compare UV laser patterning of fluorine-doped tin oxide (FTO) films from the front and back sides. We summarize a formula for calculating the focus offset in back-side ablation (BSA) and analyze systematically the relationships between the laser ablation crater size, the damage on glass substrate, and the laser ablation parameters. In addition, the laser ablation process and mechanisms of the BSA and the front-side ablation (FSA) are also elaborated in this paper.

Keywords

355 nm ultraviolet laser fluorine-doped tin oxide back-side ablation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Zhang, Y. Tian, J. X. Zhang, and W. Cai, Physica B, 406, 1822 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    Q. Qiao, J. Beck, R. Lumpkin, et al., Sol. Energy Mater. Sol. Cells, 90, 1034 (2006).CrossRefGoogle Scholar
  3. 3.
    R. Valaski, C. D. Canestraro, L. Micaroni, et al., Sol. Energy Mater. Sol. Cells, 91, 684 (2007).CrossRefGoogle Scholar
  4. 4.
    C.-Y. Kim and D.-H. Riu, Thin Solid Films, 519, 3081 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    D. Passeri, M. Rossi, A. Alippi, et al., Superlattices Microstruct., 44, 641 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    B. Russo and G. Z. Cao, Appl. Phys. A, 90, 311 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    C. Sima, C. Grigoriu and S. Antohe, Thin Solid Films, 519, 595 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    S. Xiao, S. A. Fernandes and A. Ostendorf, Phys. Procedia, 12, 125 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    J. Lee, S. Kim, and M. Lee, Appl. Surf. Sci., 258, 9107 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    J. Chae, L. Jang, and K. Jain, Mater. Lett., 64, 948 (2010).CrossRefGoogle Scholar
  11. 11.
    M.-F. Chen, Y.-P. Chen, W.-T. Hsiao, and Z.-P. Gu, Thin Solid Films, 515, 8515 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    M.-F. Chen, W.-T. Hsiao, Y.-S. Ho, et al., Thin Solid Films, 518, 1072 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Okamoto, Proc. SPIE, 4830, 40 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    J. Bovatsek, A. Tamhankar, R. Patel, et al., Proc. SPIE, 7201, 720116 (2009).CrossRefGoogle Scholar
  15. 15.
    J. Zhang, K. Sugioka, and K. Midorikawa, Opt. Lett., 23, 1486 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    J. Zhang, K. Sugioka, and K. Midorikawa, Appl. Phys. A, 69, S879 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    L. Tan, Optoelectronic Technol. Inform., 16, 37 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mechanical & Electrical EngineeringWenzhou UniversityWenzhouChina
  2. 2.Sino-German College of Intelligent ManufacturingShenzhen Technology UniversityShenzhenChina

Personalised recommendations