Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 6, pp 571–580 | Cite as

Raman Spectroscopy Investigation of Polytetrafluoroethylene in Different Zones of Impact of Continuous CO2 Laser Radiation

  • Sadulla R. Allyarov
  • Ivan A. Frolov
  • Evgenii M. Tolstopyatov
  • David A. DixonEmail author
  • Monica Vasiliu
  • Leonid F. Ivanov
  • Petr N. Grakovich
  • Sergei V. Demidov
Article
  • 5 Downloads

Abstract

The surface of polytetrafluoroethylene (PTFE) irradiated with an IR laser was investigated by Raman spectroscopy. The degree of change in the surface depends on the fluence of the radiation and on the impact zones around the center spot of the laser beam. New absorption bands detected in the spectrum of the irradiated polymer indicate the formation of CF3 groups as a result of the destruction of the polymer chain. Polymer chain carbonization is also observed under laser irradiation. The process of structural changes in laser irradiated PTFE is refined on the basis of obtained microphotographs of the supramolecular structure. Density functional theory calculations are used to help in interpreting the Raman spectra.

Keywords

polytetrafluoroethylene supramolecular structure CO2 laser ablation Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Tolstopyatov, J. Phys. D: Appl. Phys., 38, 1993 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    Yu. A. Ol’khov, S. R. Allayarov, E. M. Tolstopyatov, et al., High Energy Chem., 44, 63 (2010).CrossRefGoogle Scholar
  3. 3.
    L. F. Ivanov, Yu. A. Ol’khov, S. R. Allayarov, et al., High Energy Chem., 48, 117 (2014).CrossRefGoogle Scholar
  4. 4.
    S. R. Allayarov, Yu. A. Olkhov, V. G. Nikolskii, et al., Russ. J. Phys. Chem B., 8, 574 (2014).CrossRefGoogle Scholar
  5. 5.
    U. Mihaly, S. Sterkel, H. M. Ortner, et al., Croat. Chem. Acta., 79, 497 (2006).Google Scholar
  6. 6.
    L. N. Ignatieva, N. A. Adamenko, A. V. Kazurov, et al., Inorg. Mater. Appl. Res., 4, 468 (2013).CrossRefGoogle Scholar
  7. 7.
    M.Wu, M. Ray, K. H. Fung, et al., Appl. Spectrosc., 54, 800 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    D. J. Cutler, P. J. Hendra, R. R. Rahalkar, and M. E. A. Cudby, Polymer, 22, 726 (1981)CrossRefGoogle Scholar
  9. 9.
    F. J. Boerio and J. L. Koenig, J. Chem. Phys., 52, 4826 (1970).ADSCrossRefGoogle Scholar
  10. 10.
    M. Mohammadian-Kohol, M. Asgari, and H. R. Shakur, Radiat. Phys. Chem., 145, 11 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    J. Y. Kim, Y. Furukawa, A. Sakamoto, and M. Tasumi, Macromol. Res., 10, 286 (2002).CrossRefGoogle Scholar
  12. 12.
    V. A. Marikhin, I. I. Novak, E. G. Guk, et al., Phys. Solid State, 39, 1885 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    H. E. Schaffer, R. R. Chance, R. J. Silbey, et al., J. Chem. Phys., 94, 4161 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    H. Kuzmany, Phys. Status Solidi, 97(B), 521 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    G. Zannoni and G. Zerbi, J. Mol. Struct., 100, 485 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    L. N. Ignatieva, G. A. Zverev, N. A. Adamenko, et al., in: Abstracts of the 9th International Conference Times of Polymers and Composites: From Aerospace to Nanotechnology (Ischia, Italy, 1981), AIP Conf. Proc., 020134 (2018).Google Scholar
  17. 17.
    J. L. Koenig and F. J. Boerio, J. Chem. Phys., 50, 2823 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    R. J. Lehnert, P. J. Hendra, N. Everall, and N. J. Clayden, Polymer, 38, 1521 (1997).CrossRefGoogle Scholar
  19. 19.
    J. T. Shen, Y. T. Pei, and J. Th. M. De Hosson, J. Mater. Sci., 49, 1484 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press (1989).Google Scholar
  21. 21.
    A. D. Becke, J. Chem. Phys., 98, 5648 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem., 70, 560 (1992).CrossRefGoogle Scholar
  24. 24.
    D. A. Dixon and F. A. van Catledge, Int. J. Supercomput. Appl., 2, 62 (1988).CrossRefGoogle Scholar
  25. 25.
    D. A. Dixon, J. Phys. Chem., 96, 3698 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sadulla R. Allyarov
    • 1
  • Ivan A. Frolov
    • 1
  • Evgenii M. Tolstopyatov
    • 2
  • David A. Dixon
    • 3
    Email author
  • Monica Vasiliu
    • 3
  • Leonid F. Ivanov
    • 2
  • Petr N. Grakovich
    • 2
  • Sergei V. Demidov
    • 1
  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.V. A. Belyi Metal-Polymer Research Institute, National Academy of Sciences of BelarusGomelBelarus
  3. 3.Department of Chemistry and BiochemistryThe University of AlabamaTuscaloosaUSA

Personalised recommendations