Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 6, pp 554–558 | Cite as

Stimulated Raman Scattering in Photonic Crystals Infiltrated with Raman-Active Liquids

  • M. A. Shevchenko
  • N. V. Tcherniega
  • M. V. Tareeva
  • R. A. Khmelnitsky
  • A. D. KudryavtsevaEmail author
  • V. I. Savichev
Article
  • 74 Downloads

Abstract

Under ruby-laser excitation, we register stimulated Raman scattering (SRS) in different liquids, which are active in Raman scattering (water, ethanol, acetone) and are infiltrated into pores of synthetic opal matrices. We show that the SRS conversion efficiency is essentially higher than that for corresponding bulk materials. We demonstrate the possibility to use such a method for the determination and spectral analysis of small amounts of substances. In the samples under study, we observe the fine structure of the first SRS component coinciding in frequency with the spectral shift of stimulated low-frequency Raman scattering of light in an opal matrix caused by the transmission of vibrations from silica globules forming the opal matrix.

Keywords

stimulated scattering laser photonic crystal spectrum conversion efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Bertolotti, Opt. A: Pure Appl. Opt., 8, S9 (2006).CrossRefGoogle Scholar
  2. 2.
    D. G. Gusev, I. V. Soboleva, M. G., et al, Phys. Rev. B, 68, 233303 (2003).Google Scholar
  3. 3.
    A. A. Fedyanin, O. A. Aktsipetrov, D. A. Kurdyukov, et al., Appl. Phys. Lett., 87, 151111 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    S. V. Gaponenko, Phys. Rev. B, 65, 140303(R) (2002).ADSCrossRefGoogle Scholar
  5. 5.
    V. S. Gorelik, A. D. Kudryavtseva, N. V. Tcherniega, J. Russ. Laser Res., 29, 551 (2008).CrossRefGoogle Scholar
  6. 6.
    V. S. Gorelik, A. D. Kudryavtseva, V. A. Orlovich, et al., J. Russ. Laser Res., 34, 523 (2013).CrossRefGoogle Scholar
  7. 7.
    Y. Almohamed, R. Barille, A. I. Vodchits, et al., JETP Lett., 101, 365 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    V. S. Gorelik, A. D. Kudryavtseva, M. V. Tareeva, et al., Bull. Lebedev Phys. Inst., 44, 46 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    H. A. Sumeruk, S. Kneip, D. R. Symes, et al., Phys. Rev. Lett., 98, 98045001 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    K. I. Zaytsev, V. S. Gorelik, G. M. Katyba, and S. O. Yurchenko, J. Phys.: Conf. Ser., 541, 012072 (2014).Google Scholar
  11. 11.
    N. V. Tcherniega and A. D. Kudryavtseva, J. Russ. Laser Res., 27, 400 (2006).CrossRefGoogle Scholar
  12. 12.
    N. V. Tcherniega and A. D. Kudryavtseva, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 3, 513 (2009).CrossRefGoogle Scholar
  13. 13.
    N. Tcherniega, M. Samoylovich, A. Kudryavtseva, et al., Opt. Lett., 35, 300 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    N. V. Tcherniega, K. I. Zemskov, V. V. Savranskii, et al., Opt. Lett., 38, 824 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    M. A. Shevchenko, L. L. Chaikov, M. N. Kirichenko, et al., J. Russ. Laser Res., 40, 71 (2019).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Shevchenko
    • 1
  • N. V. Tcherniega
    • 1
  • M. V. Tareeva
    • 1
  • R. A. Khmelnitsky
    • 1
  • A. D. Kudryavtseva
    • 1
    Email author
  • V. I. Savichev
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations