Journal of Russian Laser Research

, Volume 40, Issue 6, pp 530–539 | Cite as

Propagation Characteristics of Higher-Order Mixed-Pattern Solitons in Nonlinear Media

  • Zhiping Dai
  • Feng Wen
  • Shuai Jia
  • Zhenjun YangEmail author


In this paper, we study the propagation and evolution of higher-order mixed-pattern solitons in nonlinear media with a strong nonlocality. The propagation analytic formula of higher-order mixed-pattern solitons is derived and discussed in detail. Taking the fourth-order mixed-pattern solitons as an example and based on numerical calculations, we present the variations of second-order moment beam width, the light intensity, and the wavefront curvature. We show that the propagation evolution exhibits unique characteristics depending on different relative factors of higher-order mixed-pattern solitons. The influence of the beam order on the propagation evolution is also discussed.


nonlinear media spatial nonlocality soliton nonlinear propagation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. S. Kivshar and G. P. Agrawal, Spatial Solitons, Academic Press, Amsterdam (2003).Google Scholar
  2. 2.
    G. P. Agrawal, Nonlinear Fiber Optics, 5th ed., Academic Press, Oxford (2013).Google Scholar
  3. 3.
    R. Guo, Y. F. Liu, H. Q. Hao, and F. H. Qi, Nonlin. Dyn., 80, 1221 (2015).CrossRefGoogle Scholar
  4. 4.
    X. J. Zhao, R. Guo, and H. Q. Hao, Appl. Math. Lett., 75, 114 (2018).MathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Q. Hao, R. Guo, and J. W. Zhang, Nonlin. Dyn., 88, 1615 (2017).CrossRefGoogle Scholar
  6. 6.
    J. Y. Song, H. Q. Hao, and X. M. Zhang, Appl. Math. Lett., 78, 126 (2018).MathSciNetCrossRefGoogle Scholar
  7. 7.
    X. Ma, O. A. Egorov, and S. Schumacher, Phys. Rev. Lett., 118, 157401 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    F. Wen, X. Zhang, H. Ye, et al., Laser Photon. Rev., 12, 1800050 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    X. Ma and S. Schumacher, Phys. Rev. Lett., 121, 227404 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    R. R. Jia and R. Guo, Appl. Math. Lett., 93, 117 (2019).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. W. Snyder and D. J. Mitchell, Science, 276, 1538 (1997).CrossRefGoogle Scholar
  12. 12.
    Q. Guo, B. Luo, F. Yi, et al., Phys. Rev. E, 69, 016602 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    Z. J. Yang, S. M. Zhang, X. L. Li, and Z. G. Pang, Appl. Math. Lett., 82, 64 (2018).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett., 98, 053901 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    Z. Shi, H. Li, and Q. Guo, Phys. Lett. A, 376, 2509 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    Z. J. Yang, Z. P. Dai, S. M. Zhang, and Z. G. Pang, Nonlin. Dyn., 80, 1081 (2015).CrossRefGoogle Scholar
  17. 17.
    Z. Dai, Z. Yang, X. Ling, et al., Sci. Rep., 7, 122 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    Z. Dai, Y. Wang, and Q. Guo, Phys. Rev. A, 77, 063834 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    Z. Dai and Q. Guo, J. Opt. Soc. Am. B, 28, 134 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    T. P. Horikis and D. J. Frantzeskakis, Opt. Lett., 41, 583 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    S. L. Xu, L. Xue, M. R. Beli´c, and J. R. He, Nonlin. Dyn., 87, 827 (2017).Google Scholar
  22. 22.
    L. Song, Z. Yang, X. Li, and S. Zhang, Opt. Express, 26, 19182 (2018).ADSCrossRefGoogle Scholar
  23. 23.
    L. Song, Z. Yang, S. Zhang, and X. Li, Opt. Express, 27, 26331 (2019).ADSCrossRefGoogle Scholar
  24. 24.
    Y. V. Izdebskaya, A. S. Desyatnikov, and Y. S. Kivshar, Phys. Rev. Lett., 111, 123902 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    F. Maucher, T. Pohl, S. Skupin, and W. Krolikowski, Phys. Rev. Lett., 116, 163902 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    D. Lu, Q. Zhan, Q. Duan, and W. Hu, Phys. Rev. A, 87, 023815 (2013).Google Scholar
  27. 27.
    D. Lu, W. Hu, Y. Zheng, et al., Phys. Rev. A, 78, 043815 (2008).Google Scholar
  28. 28.
    Z. Yang, D. Lu, W. Hu, et al., Phys. Lett. A, 374, 4007 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    D. Deng, Opt. Commun., 285, 3976 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    Z. Dai, Z. Yang, S. Zhang, and Z. Pang, Opt. Commun., 350, 19 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    Z. J. Yang, S. M. Zhang, X. L. Li, et al., Nonlin. Dyn., 94, 2563 (2018).CrossRefGoogle Scholar
  32. 32.
    Z. J. Yang, Z. F. Yang, J. X. Li, et al., Results Phys., 7, 1485 (2018).ADSCrossRefGoogle Scholar
  33. 33.
    L. Song, Z. Yang, S. Zhang, and X. Li, Phys. Rev. A, 99, 063817 (2019).Google Scholar
  34. 34.
    L. M. Song, Z. J. Yang, Z. G. Pang, et al., Appl. Math. Lett., 90, 42 (2019).MathSciNetCrossRefGoogle Scholar
  35. 35.
    H. T. Eyyuboğu and Y. Baykal, Opt. Express, 12, 4659 (2004).Google Scholar
  36. 36.
    G. Q. Zhou, Opt. Express, 19, 3945 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    P. A. B´elanger, Opt. Lett., 16, 196 (1991).Google Scholar
  38. 38.
    S. Jia, L. M. Song, Z. J. Yang, et al., Results Phys., 12, 1843 (2019).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhiping Dai
    • 1
  • Feng Wen
    • 2
  • Shuai Jia
    • 3
  • Zhenjun Yang
    • 3
    Email author
  1. 1.College of Physics and Electronic EngineeringHengyang Normal UniversityHengyangChina
  2. 2.Key Laboratory for Physical Electronics and Devices of the Ministry of Education School of ScienceXi’an Jiaotong UniversityXi’anChina
  3. 3.College of Physics and Hebei Advanced Thin Film LaboratoryHebei Normal UniversityShijiazhuangChina

Personalised recommendations