Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 6, pp 522–529 | Cite as

New Entropic Inequalities for Qudit (Spin j = 9/2)

  • Vladimir I. Man’ko
  • Taiman T. SabyrgaliyevEmail author
Article
  • 9 Downloads

Abstract

We consider information characteristics of a single qudit (spin j = 9/2), such as the von Neumann entropy, and define the von Neumann mutual information for this system, which does not contain any subsystems. In addition, we consider the von Neumann information of a qudit toy model as a function of real parameters. The inequalities obtained describe the quantum hidden correlations in the single-qudit system.

Keywords

quantum entropy von Neumann information entropic inequalities noncomposite systems hidden quantum correlations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Kolmogorov and A. T. Bharucha-Reid, Foundations of the Theory of Probability, 2nd ed., Courier Dover Publications, Mineola, New York (2018).Google Scholar
  2. 2.
    A. S. Holevo, Probabilistic and Statistical Aspects of Quantun Theory, North Holland, Amsterdam (1982).Google Scholar
  3. 3.
    M. Asano, I. Basieva, E. Pothos, and A. Khrennikov, Entropy, 20, 6 (2018).CrossRefGoogle Scholar
  4. 4.
    J. von Neumann, Nach. Ges. Wiss. G¨ottingen, 11, 245 (1927).Google Scholar
  5. 5.
    C. Tsallis, “Nonextensive statistical mechanics and themodynamics: Historical background and present status,” in: S. Abe and Y. Okamoto (Eds.), Nonextensive Statistical Mechanics and Its Applications, Lecture Notes in Physics, Springer, Berlin (2001), Vol. 560.Google Scholar
  6. 6.
    A. Rényi, Probability Theory, North-Holland, Amsterdam (1970).Google Scholar
  7. 7.
    C. E. Shannon, Bell Syst. Tech. J., 27, 379 (1948).CrossRefGoogle Scholar
  8. 8.
    H. Araki and E. H. Lieb, Commun. Math. Phys., 18, 160 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    E. H. Lieb and M. B. Ruskai, J. Math. Phys., 14, 1938 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    M. A. Man’ko and V. I. Man’ko, Entropy, 17, 2876 (2015).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. A. Man’ko and V. I. Man’ko, Phys. Scr., T160, 014030 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Man’ko and V. I. Man’ko, J. Phys.: Conf. Ser., 538, 012016 (2014).Google Scholar
  13. 13.
    V. I. Man’ko and L. A. Markovich, J. Russ. Laser Res., 35, 200 (2014).CrossRefGoogle Scholar
  14. 14.
    V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, Found. Phys., 45, 783 (2015).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    V. I. Man’ko and L. A. Markovich, Adv. Math. Phys., 2015, 717621(2015).Google Scholar
  16. 16.
    V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, J. Russ. Laser Res., 35, 457 (2014).CrossRefGoogle Scholar
  17. 17.
    M. A. Man’ko and V. I. Man’ko, Int. J. Quantum Inform., 12, 1560006 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    V. N. Chernega and V. I. Man’ko, Int. J. Quantum Inform., 10, 1241017 (2015).CrossRefGoogle Scholar
  19. 19.
    M. A. Man’ko and V. I. Man’ko, J. Russ. Laser Res., 34, 203 (2013).CrossRefGoogle Scholar
  20. 20.
    E. Glushkov, A. Glushkova, and V. I. Man’ko, J. Russ. Laser Res., 36, 448 (2015).CrossRefGoogle Scholar
  21. 21.
    V. N. Chernega and O. V. Man’ko, Phys. Scr., 90, 074052 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    E. O. Kiktenko, A. K. Fedorov, O. V. Man’ko, and V. I. Man’ko, Phys. Rev., 91, 055101 (2015).Google Scholar
  23. 23.
    M. A. Man’ko and V. I. Man’ko, J. Russ. Laser Res., 37, 1 (2016).CrossRefGoogle Scholar
  24. 24.
    F. M. Ciaglia, F. Di Cosmo, A. Figueroa, et al., Ann. Phys., 411, 167957 (2019).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vladimir I. Man’ko
    • 1
    • 2
    • 3
  • Taiman T. Sabyrgaliyev
    • 2
    Email author
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Moscow RegionRussia
  3. 3.Department of PhysicsTomsk State UniversityTomskRussia

Personalised recommendations