Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 6, pp 515–521 | Cite as

Classical Behavior of Nonclassical Quantum States

  • E. Rafiepoor
  • M. R. BazrafkanEmail author
  • S. Batebi
Article
  • 6 Downloads

Abstract

We use a new formulation of nonclassicality in weak measurements based on the probabilistic behavior of “weak quasimoments” to show that nonclassical quantum states in the Glauber–Sudarshan representation can behave classically in weak measurements with post-selection. We directly calculate marginal quasidistributions related to the “weak quasimoments” and show that they are nonnegative.

Keywords

nonclassical state quasidistribution weak measurement strange weak value 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. M. Titular and R. G. Glauber, Phys. Rev., 140, B676 (1965).ADSCrossRefGoogle Scholar
  2. 2.
    L. Mandel, Phys. Scr., T12, 34 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    L. M. Johansen and A. Luis, Phys. Rev. A, 70, 052115 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    L. M. Johansen, Phys. Rev. Lett., 93, 120402 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    L. M. Johansen, Phys. Lett. A, 329, 184 (2004).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    L. M. Johansen, J. Opt. B: Quantum Semiclass. Opt., 6, L21 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    E. Rafiepoor, S. Batebi, and M. R. Bazrafkan, Phys. Lett. A, 382, 2414 (2018).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    G. S. Agarval, Opt. Commun., 95, 109 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    G. S. Agarval and K. Tara, Phys. Rev. A, 46, 1 (1992).CrossRefGoogle Scholar
  10. 10.
    Y. Aharonov and D. Rohrlich, Quantum Paradoxes, Wiley-VCH, Weinheim (2005).CrossRefGoogle Scholar
  11. 11.
    A. G. Kofman, S. Ashhab, and F. Nori, Phys. Rep., 520, 43 (2012).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Dressel, M. Malik, M. F. M. Miatto, et al., Rev. Mod. Phys., 86, 307 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955).Google Scholar
  14. 14.
    M. R. Bazrafkan, J. Russ. Laser Res., 38, 223 (2017).CrossRefGoogle Scholar
  15. 15.
    B. Tamir and E. Cohen, Quanta, 2, 7 (2013).CrossRefGoogle Scholar
  16. 16.
    L. Mandel, Phys. Scr., T12, 34 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    G. S. Agarwal and K. Tara, Phys. Rev. A, 46, 485 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    W. Vogel, Quantum Optics. An Introduction, Wiley-VCH, Weinheim (2006).CrossRefGoogle Scholar
  19. 19.
    V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Physica, 72, 597 (1974).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of GuilanRashtIran
  2. 2.Department of Physics, Faculty of ScienceImam Khomeini International UniversityQazvinIran

Personalised recommendations