Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 5, pp 474–485 | Cite as

Penetration of Electromagnetic Radiation in Plasma Produced by Multiphoton Ionization

  • K. Yu. Vagin
  • T. V. Mamontova
  • S. A. UryupinEmail author
Article
  • 12 Downloads

Abstract

We investigate the interaction between a test monochromatic wave and semibounded plasma formed by multiphoton ionization of gas atoms. Under conditions where photoelectron distribution is isotropic and has a narrow peak in energy, the field in the plasma is represented by two contributions. The first of them arises from a pole in the complex plane of wave numbers and decays exponentially deeper into plasma. The second contribution comes from banks of the cut in the same plane and leads to a power-law decrease of the field under conditions of the anomalous skin effect. We obtain analytical expressions for the field under conditions of high-frequency and anomalous skin effects and find the surface impedance and absorption coefficient.

Keywords

field penetration multiphoton ionization surface impedance skin effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. H. Reuter, E. H. Sondheimer, and A. H. Wilson, Proc. R. Soc., London, Ser. A. Math. Phys. Sci., 195, 1042 (1948).Google Scholar
  2. 2.
    A. B. Pippard, Physica, 15, 45 1949).ADSCrossRefGoogle Scholar
  3. 3.
    R. B. Dingle, Physica, 19, 311 (1953).ADSCrossRefGoogle Scholar
  4. 4.
    R. B. Dingle, Appl. Sci. Res., B2, 69 (1953).Google Scholar
  5. 5.
    V. D. Shafranov, Zh. ´ Eksp. Teor. Fiz., 34, 1475 (1958) [English translation: Sov. Phys. JETP, 7, 1019 (1958)].Google Scholar
  6. 6.
    K. N. Stepanov, Zh. ´ Eksp. Teor. Fiz., 36, 1457 (1959) [English translation: Sov. Phys. JETP, 9, 1035 (1959)].Google Scholar
  7. 7.
    V. P. Silin, Zh. ´ Eksp. Teor. Fiz., 40, 616 (1961) [English translation: Sov. Phys. JETP, 13, 430 (1961)].Google Scholar
  8. 8.
    A. V. Kobelev and V. P. Silin, Phys. Metals Metallogr., 44, 499 (1977).Google Scholar
  9. 9.
    V. P. Silin and E. P. Fetisov, Phys. Status Solidi, 39, 49 (1970).CrossRefGoogle Scholar
  10. 10.
    N. A. Zimbovskaya, J. Phys.: Condens. Matter, 18, 8149 (2006).ADSGoogle Scholar
  11. 11.
    V. P. Silin and E. P. Fetisov, Zh. ´ Eksp. Teor. Fiz., 41, 159 (1962) [English translation: Sov. Phys. JETP, 14, 115 (1962)].Google Scholar
  12. 12.
    T. Nakamura, S. Kato, and T. Kato, Laser Part. Beams, 20, 101107 (2002).CrossRefGoogle Scholar
  13. 13.
    G. Ferrante, M. Zarcone, D. S. Uryupina, and S. A. Uryupin, Phys. Plasmas, 10, 3344 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Bogatskaya and A. M. Popov, JETP Lett., 97, 388 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    K. Yu. Vagin, T. V. Mamontova, and S. A. Uryupin, Contrib. Plasma Phys., 58, 276 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    G. Petite, P. Agostini, and F. J. Yergeau, J. Opt. Soc. Am. B, 4, 765 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    P. Agostini and G. Petite, in: Atomic and Molecular Processes with Short Intense Laser Pulses, Plenum Press, New York (1988), p. 135.CrossRefGoogle Scholar
  18. 18.
    V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-Like Media [in Russian], Gosatomizdat, Moscow (1961).Google Scholar
  19. 19.
    A. N. Kondratenko, Penetration of the Field into Plasma [in Russian], Atomizdat, Moscow (1979).Google Scholar
  20. 20.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York (1964).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • K. Yu. Vagin
    • 1
  • T. V. Mamontova
    • 1
    • 2
  • S. A. Uryupin
    • 1
    Email author
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations