Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 4, pp 375–381 | Cite as

Improved Wavelength Measurement of 2S1/22P1/2 and 2D3/23[3/2]1/2 Transitions in Yb+

  • Ilia ZalivakoEmail author
  • Ilia Semerikov
  • Alexander Borisenko
  • Vasilii Smirnov
  • Pavel Vishnyakov
  • Mikhail Aksenov
  • Pavel Sidorov
  • Nikolai Kolachevsky
  • Ksenia Khabarova
Article
  • 16 Downloads

Abstract

Trapped ions nowadays play an important role in both fundamental science and technical applications. Due to its convenient energy structure, singly charged ytterbium ion is widely used in microwave and optical frequency standards, tests of fundamental theories, and quantum information science. In this paper, we present the results of wavelengths measurements in the 2S1/22P1/2 and 2D3/23[3/2]1/2 transitions in 170Yb+, 171Yb+, 172Yb+, 174Yb+, and 176Yb+ ions with uncertainties of 50 and 20 MHz, respectively. We reach a factor of three-times improvement in the accuracy with respect to the previously published data, which significantly simplifies the process of initial ion trapping and cooling, in a laser system and an ion trap designed for the YBIS Project aimed for developing a compact and transportable optical clock based on a single 171Yb+ ion.

Keywords

ions laser cooling spectroscopy frequency standards lasers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. D. Lett, W. D. Phillips, S. L. Rolston, et al., J. Opt. Soc. Am. B, 6, 2084 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    M. Herrmann, M. Haas, U. D. Jentschura, et al., Phys. Rev. A, 79, 1 (2009).CrossRefGoogle Scholar
  3. 3.
    B. Altschul, Q. G. Bailey, L. Blanchet, et al., Adv. Space Res., 55, 501 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    D. J. Berkeland, J. D. Miller, J. C. Bergquist, et al., Phys. Rev. Lett., 80, 2089 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    C. W. Chou, D. B. Hume, J. C. J. Koelemeij, et al., Phys. Rev. Lett., 104, 8 (2010).Google Scholar
  6. 6.
    N. Huntemann, C. Sanner, B. Lipphardt, et al., Phys. Rev. Lett., 116, 063001 (2016).Google Scholar
  7. 7.
    K. J. Arnold, R. Kaewuam, A. Roy, et al., Nature Commun., 9, 1 (2018).CrossRefGoogle Scholar
  8. 8.
    R. L. Tjoelker, J. D. Prestage, E. A. Burt, et al., in IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control, 63, 1034 (2016).Google Scholar
  9. 9.
    J. Cao, P. Zhang, J. Shang, et al., Appl. Phys. B: Lasers Opt., 123, 1 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    [www.opticlock.de]Google Scholar
  11. 11.
    C. Lacroûte, M. Souidi, P. Y. Bourgeois, et al., J. Phys. Conf. Ser., 723, 012025 (2016).Google Scholar
  12. 12.
    I. A. Semerikov, K. Y. Khabarova, I. V. Zalivako, et al., Bull. Lebedev Phys. Inst., 45, 337 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    S. Debnath, N. M. Linke, C. Figgatt, et al., Nature, 536, 63 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    [www.ionq.com].Google Scholar
  15. 15.
    K. Lakhmanskiy, P. C. Holz, D. Schärtl, et al., Phys. Rev. A, 99, 1 (2019).Google Scholar
  16. 16.
    G. Jacob, K. Groot-Berning, S. Wolf, et al., Phys. Rev. Lett., 117, 1 (2016).CrossRefGoogle Scholar
  17. 17.
    J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, et al., Phys. Rev. A, 83, 1 (2011).CrossRefGoogle Scholar
  18. 18.
    D. J. Berkeland and M. G. Boshier, Phys. Rev. A, 65, 13 (2002).CrossRefGoogle Scholar
  19. 19.
    R. Blatt, H. Schnatz, and G. Werth, Phys. Rev. Lett., 48, 1601 (1982).ADSCrossRefGoogle Scholar
  20. 20.
    A. Roy, S. De, B. Arora, and B. K. Sahoo, J. Phys. B: At. Mol. Opt. Phys., 50, 205201 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    D. J. Berkeland, J. D. Miller, J. C. Bergquist, et al., J. Appl. Phys., 83, 5025 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    J. T. Höffges, H. W. Baldauf, T. Eichler, et al., Opt. Commun., 133, 170 (1997).Google Scholar
  23. 23.
    A. Golovizin, E. Fedorova, D. Tregubov, et al., Nature Commun., 10, 1 (2019).CrossRefGoogle Scholar
  24. 24.
    C. A. Schrama, E. Peik, W. W. Smith, and H. Walther, Opt. Commun., 101, 32 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    M. Kleinert, M. E. Gold Dahl, and S. Bergeson, Phys. Rev. A, 94, 1 (2016).CrossRefGoogle Scholar
  26. 26.
    D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys., 75, 281 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    I. V. Zalivako, A. S. Borisenko, I. A. Semerikov, et al., Quantum Electron., 48, 448 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ilia Zalivako
    • 1
    Email author
  • Ilia Semerikov
    • 1
  • Alexander Borisenko
    • 1
  • Vasilii Smirnov
    • 2
  • Pavel Vishnyakov
    • 1
  • Mikhail Aksenov
    • 1
  • Pavel Sidorov
    • 3
  • Nikolai Kolachevsky
    • 1
    • 2
    • 3
  • Ksenia Khabarova
    • 1
    • 3
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Moscow RegionRussia
  3. 3.Russian Quantum Center Skolkovo ICMoscowRussia

Personalised recommendations