Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 3, pp 265–268 | Cite as

Sensitive Detection of Ammonia Based on Quartz-Enhanced Photoacoustic Spectroscopy

  • Hongtao Dang
  • Yufei MaEmail author
  • Fuhua Liu
  • Jie Lu
Article
  • 4 Downloads

Abstract

This letter describes a sensitive quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for measuring ammonia (NH3) concentrations based on a custom quartz tuning fork (QTF) with a small gap of 200 μm. The signal was enhanced by adding a microresonator (mR) with an optimum length of 5 mm to the bare QTF. Wavelength modulation spectroscopy with second-harmonic detection was adopted to reduce the noise level and simplify the data processing. After optimization of the laser modulation depth, a minimum detection limit of 22.6 ppm was obtained.

Keywords

quartz-enhanced photoacoustic spectroscopy quartz tuning fork microresonator ammonia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. R. Narasimhan, W. Goodman, and C. K. N. Patel, Proc. Natl. Acad. Sci., 98, 4617 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    V. P. Aneja, P. A. Roelle, G. C. Murray, et al., Atmos. Environ., 35, 1903 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    K. W. van der Hoek, Atmos. Environ., 32, 315 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, Opt. Lett., 27, 1902 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    Y. F. Ma, Y. He, Y. Tong, et al., Opt. Express, 25, 29356 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    Y. N. Liu, J. Chang, J. Lian, et al., Sensors, 16, 214 (2016).CrossRefGoogle Scholar
  7. 7.
    Y. F. Ma, Appl. Sci., 8, 1822 (2018).CrossRefGoogle Scholar
  8. 8.
    H. D. Zheng, L. Dong, Y. Ma, et al., Opt. Express, 24, A752 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    Y. F. Ma, Y. He, C. Chen, et al., Sensors, 16, 989 (2016).CrossRefGoogle Scholar
  10. 10.
    R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, Opt. Express, 15, 7357 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    X. T. Yang, Y. H. Xiao, Y. F. Ma, et al., Sensors, 17, 1750 (2017).CrossRefGoogle Scholar
  12. 12.
    M. Triki, B. T. Nguyen, and A. Vicet, Infrared Phys. Techn., 69, 74 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    Y. F. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, Opt. Express, 21, 1008 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    J. P. Waclawek, H. Moser, and B. Lendl, Opt. Express, 24, 6559 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    Y. F. Ma, Y. He, L. G. Zhang, et al., Appl. Phys. Lett., 110, 031107 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    K. Liu, W. X. Zhao, L. Wang, et al., Opt. Commun., 340, 126 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    Y. F. Ma, Y. He, Xin Yu, et al., Appl. Phys. Lett., 108. 091115 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    Y. F. Ma, Y. Tong, Y. He, et al., Opt. Express, 27, 9302 (2019).ADSCrossRefGoogle Scholar
  19. 19.
    I. E. Gordon, L. S. Rothman, C. Hill, et al., J. Quantum Spectrosc. Radiat. Transf., 203, 3 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanxi Engineering Research Center of Controllable Neutron Sources School of ScienceXijing UniversityXi’anChina
  2. 2.National Key Laboratory of Science and Technology on Tunable Laser Harbin Institute of TechnologyHarbinChina
  3. 3.Xi’an Guanneng Neutron Detection Technology Co., Ltd.Xi’anChina

Personalised recommendations