Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 3, pp 249–254 | Cite as

Impedance Spectroscopy of Polyaniline Films Modified by Carbon Particles

  • Pavel Forsh
  • Alexey Tameev
  • Alim Mazinov
  • Konstantin SavinEmail author
  • Elizaveta Perchenko
  • Ekaterina Forsh
  • Elena Guseva
  • Alexey Shevchenko
  • Oxana Gribkova
  • Marine Tedoradze
Article
  • 3 Downloads

Abstract

We investigate the conductivity of a composite of PANI-PAMPSA and PANI-PAMPSA with carbon particles by impedance spectroscopy. We establish that the addition of carbon particles to the PANI-PAMPSA composite leads to a significant rise in the conductivity over the entire range of frequencies studied (from 10 Hz to 5 MHz). Such increase in conductivity is very important for using the PANI-PAMPSA composite in solar energy. We propose an equivalent electrical circuit of the samples investigated. At low frequencies, the conductivity dependence on frequency indicates the hopping mechanism of the charge carrier transport.

Keywords

polyaniline carbon particles impedance spectroscopy current–voltage characteristics frequency dependence of conductivity hopping conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Greenham, X. Peng, and A. Alivisatos, Phys. Rev. B, 54, 17628 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    W. U. Huynh, X. Peng, and A. P. Alivisatos, Adv. Mater., 11, 923 (1999).CrossRefGoogle Scholar
  3. 3.
    W. U. Huynh, J. J. Dittmer, N. Teclemariam, et al., Phys. Rev. B, 67, 115326 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    E. Arici, N. S. Sariciftci, and D. Meissner, Adv. Funct. Mater., 13, 165 (2003).CrossRefGoogle Scholar
  5. 5.
    S. A. McDonald, G. Konstantatos, S. Zhang, et al., Nature Mater., 4, 138 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    D. Cui, J. Xu, T. Zhu, et al., Appl. Phys. Lett., 88, 183111 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    W. J. Beek, M. M. Wienk, and R. A. Janssen, Adv. Mater., 12, 1009 (2004).CrossRefGoogle Scholar
  8. 8.
    W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Adv. Funct. Mater., 16, 1112 (2006).CrossRefGoogle Scholar
  9. 9.
    K. M. Zaidan, H. F. Hussein, R. A. Talib, and A. K. Hassan, Energy Procedia, 6, 85 (2011).CrossRefGoogle Scholar
  10. 10.
    O. L. Gribkova, A. A. Nekrasov, M. Trchova, et al., Polymer, 52, 2474 (2011).CrossRefGoogle Scholar
  11. 11.
    O. D. Omelchenko, O. L. Gribkova, A. R. Tameev, et al., Protect Met. Phys. Chem. Surf., 50, 613 (2014).CrossRefGoogle Scholar
  12. 12.
    O. D. Iakobson, O. L. Gribkova, A. A. Nekrasov, et al., Prot. Met. Phys. Chem. Surf., 52, 1005 (2016).CrossRefGoogle Scholar
  13. 13.
    O. L. Gribkova, A. A. Nekrasov, V. A. Cabanova, et al., Chem. Papers, 72, 1741 (2018).CrossRefGoogle Scholar
  14. 14.
    O. D. Iakobson, O. L. Gribkova, A. R. Tameev, et al., J. Ind. Eng. Chem., 65, 390 (2018).CrossRefGoogle Scholar
  15. 15.
    Shaker Ebrahim, Polymer Sci., Ser. A, 53, 1217 (2011).Google Scholar
  16. 16.
    C. H. Manathunga and V. P. S. Perera, in: Annual Academic Sessions (2013), p. 365.Google Scholar
  17. 17.
    P. A. Forsh, M. N. Martyshov, V. Yu. Timoshenko, and P. K. Kashkarov, Phys. Status Solidi C, 4, 1981 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    P. A. Forsh, M. N. Martyshov, V. Yu. Timoshenko, and P. K. Kashkarov, Semiconductors, 40, 471 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    M. H. Brodsky, Amorphous Semiconductors, Springer, Berlin, Heideberg, New York (1985), p. 118.CrossRefGoogle Scholar
  20. 20.
    J. C. Dyre and T. B. Shroder, Rev. Mod. Phys., 72, 873 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    A. K. Jonscher, Nature, 267, 673 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    A. R. Long, Adv. Phys., 31, 553 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    J. C. Dyre, Phys. Lett. A, 108, 457 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    J. C. Dyre and T. B. Shroder, Phys. Status Solidi B, 230, 5 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    T. B. Shroder and J. C. Dyre, Phys. Chem. Chem. Phys., 4, 3173 (2002).CrossRefGoogle Scholar
  26. 26.
    T. N. Koltunowicz, P. Zukowski, O. Boiko, et al., J. Electron. Mater., 44, 2260 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    G. S. Psarras, Composites, Pt. A, 37, 1545 (2006).Google Scholar
  28. 28.
    P. Zukowski, T. N. Koltunowicz, O. Boiko, et al., Vacuum, 120, 37 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pavel Forsh
    • 1
    • 2
    • 3
  • Alexey Tameev
    • 4
  • Alim Mazinov
    • 5
  • Konstantin Savin
    • 1
    • 3
    Email author
  • Elizaveta Perchenko
    • 1
  • Ekaterina Forsh
    • 6
  • Elena Guseva
    • 6
  • Alexey Shevchenko
    • 5
  • Oxana Gribkova
    • 4
  • Marine Tedoradze
    • 4
  1. 1.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  5. 5.Vernadsky Crimean Federal UniversitySimferopolRussia
  6. 6.Moscow Automobile and Road Construction State Technical UniversityMoscowRussia

Personalised recommendations